These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 21149686)

  • 21. How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth?
    Schad M; Konhauser KO; Sánchez-Baracaldo P; Kappler A; Bryce C
    Free Radic Biol Med; 2019 Aug; 140():154-166. PubMed ID: 31323314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biogeochemistry of dihydrogen (H2).
    Hoehler TM
    Met Ions Biol Syst; 2005; 43():9-48. PubMed ID: 16370113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The geobiological nitrogen cycle: From microbes to the mantle.
    Zerkle AL; Mikhail S
    Geobiology; 2017 May; 15(3):343-352. PubMed ID: 28158920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Earth's biggest 'whodunnit': unravelling the clues in the case of the end-Permian mass extinction.
    White RV
    Philos Trans A Math Phys Eng Sci; 2002 Dec; 360(1801):2963-85. PubMed ID: 12626276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of the global phosphorus cycle.
    Reinhard CT; Planavsky NJ; Gill BC; Ozaki K; Robbins LJ; Lyons TW; Fischer WW; Wang C; Cole DB; Konhauser KO
    Nature; 2017 Jan; 541(7637):386-389. PubMed ID: 28002400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Earliest land plants created modern levels of atmospheric oxygen.
    Lenton TM; Dahl TW; Daines SJ; Mills BJ; Ozaki K; Saltzman MR; Porada P
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9704-9. PubMed ID: 27528678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles.
    Hu Q; Kim DY; Yang W; Yang L; Meng Y; Zhang L; Mao HK
    Nature; 2016 Jun; 534(7606):241-4. PubMed ID: 27279220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flammability thresholds or flammability gradients? Determinants of fire across savanna-forest transitions.
    Newberry BM; Power CR; Abreu RCR; Durigan G; Rossatto DR; Hoffmann WA
    New Phytol; 2020 Nov; 228(3):910-921. PubMed ID: 33410161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathways of change: Predicting the effects of fire on flammability.
    McColl-Gausden SC; Penman TD
    J Environ Manage; 2019 Feb; 232():243-253. PubMed ID: 30476686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The human dimension of fire regimes on Earth.
    Bowman DM; Balch J; Artaxo P; Bond WJ; Cochrane MA; D'Antonio CM; Defries R; Johnston FH; Keeley JE; Krawchuk MA; Kull CA; Mack M; Moritz MA; Pyne S; Roos CI; Scott AC; Sodhi NS; Swetnam TW; Whittaker R
    J Biogeogr; 2011 Dec; 38(12):2223-2236. PubMed ID: 22279247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems.
    Haberl H; Erb KH; Krausmann F; Gaube V; Bondeau A; Plutzar C; Gingrich S; Lucht W; Fischer-Kowalski M
    Proc Natl Acad Sci U S A; 2007 Jul; 104(31):12942-7. PubMed ID: 17616580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shoot flammability of vascular plants is phylogenetically conserved and related to habitat fire-proneness and growth form.
    Cui X; Paterson AM; Wyse SV; Alam MA; Maurin KJL; Pieper R; Padullés Cubino J; O'Connell DM; Donkers D; Bréda J; Buckley HL; Perry GLW; Curran TJ
    Nat Plants; 2020 Apr; 6(4):355-359. PubMed ID: 32284547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere.
    Canfield DE; Ngombi-Pemba L; Hammarlund EU; Bengtson S; Chaussidon M; Gauthier-Lafaye F; Meunier A; Riboulleau A; Rollion-Bard C; Rouxel O; Asael D; Pierson-Wickmann AC; El Albani A
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16736-41. PubMed ID: 24082125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Re-examining Dust Chemical Aging and Its Impacts on Earth's Climate.
    Gaston CJ
    Acc Chem Res; 2020 May; 53(5):1005-1013. PubMed ID: 32349473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A New Frontier for Palaeobiology: Earth's Vast Deep Biosphere.
    McMahon S; Ivarsson M
    Bioessays; 2019 Aug; 41(8):e1900052. PubMed ID: 31241200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling between Grand cycles and Events in Earth's climate during the past 115 million years.
    Boulila S
    Sci Rep; 2019 Jan; 9(1):327. PubMed ID: 30674928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomass consumption by surface fires across Earth's most fire prone continent.
    Murphy BP; Prior LD; Cochrane MA; Williamson GJ; Bowman DMJS
    Glob Chang Biol; 2019 Jan; 25(1):254-268. PubMed ID: 30270480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyanobacterial Diazotrophy and Earth's Delayed Oxygenation.
    Olson SL; Reinhard CT; Lyons TW
    Front Microbiol; 2016; 7():1526. PubMed ID: 27721813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defending Earth's terrestrial microbiome.
    Averill C; Anthony MA; Baldrian P; Finkbeiner F; van den Hoogen J; Kiers T; Kohout P; Hirt E; Smith GR; Crowther TW
    Nat Microbiol; 2022 Nov; 7(11):1717-1725. PubMed ID: 36192539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of processes in the earth's crust on evolution of photosynthesis (as indicated by data on carbon isotopic composition)].
    Ivlev AA
    Zh Evol Biokhim Fiziol; 2010; 46(3):247-60. PubMed ID: 20583589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.