BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 21149716)

  • 61. Purinergic signalling - a possible mechanism for KCNQ1 channel response to cell volume challenges.
    Hammami S; Willumsen NJ; Meinild AK; Klaerke DA; Novak I
    Acta Physiol (Oxf); 2013 Mar; 207(3):503-15. PubMed ID: 22805606
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A comprehensive structural model for the human KCNQ1/KCNE1 ion channel.
    Jalily Hasani H; Ahmed M; Barakat K
    J Mol Graph Model; 2017 Nov; 78():26-47. PubMed ID: 28992529
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Upregulation of KCNE1 induces QT interval prolongation in patients with chronic heart failure.
    Watanabe E; Yasui K; Kamiya K; Yamaguchi T; Sakuma I; Honjo H; Ozaki Y; Morimoto S; Hishida H; Kodama I
    Circ J; 2007 Apr; 71(4):471-8. PubMed ID: 17384445
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modulation of homomeric and heteromeric KCNQ1 channels by external acidification.
    Peretz A; Schottelndreier H; Aharon-Shamgar LB; Attali B
    J Physiol; 2002 Dec; 545(3):751-66. PubMed ID: 12482884
    [TBL] [Abstract][Full Text] [Related]  

  • 65. TEA(+)-sensitive KCNQ1 constructs reveal pore-independent access to KCNE1 in assembled I(Ks) channels.
    Kurokawa J; Motoike HK; Kass RS
    J Gen Physiol; 2001 Jan; 117(1):43-52. PubMed ID: 11134230
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Frequency-dependent modulation of KCNQ1 and HERG1 potassium channels.
    Diness TG; Hansen RS; Olesen SP; Grunnet M
    Biochem Biophys Res Commun; 2006 May; 343(4):1224-33. PubMed ID: 16581021
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel.
    Kang C; Tian C; Sönnichsen FD; Smith JA; Meiler J; George AL; Vanoye CG; Kim HJ; Sanders CR
    Biochemistry; 2008 Aug; 47(31):7999-8006. PubMed ID: 18611041
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Redox- and calmodulin-dependent S-nitrosylation of the KCNQ1 channel.
    Asada K; Kurokawa J; Furukawa T
    J Biol Chem; 2009 Feb; 284(9):6014-20. PubMed ID: 19124472
    [TBL] [Abstract][Full Text] [Related]  

  • 69. KCNQ1 and KCNE1 in the IKs channel complex make state-dependent contacts in their extracellular domains.
    Xu X; Jiang M; Hsu KL; Zhang M; Tseng GN
    J Gen Physiol; 2008 Jun; 131(6):589-603. PubMed ID: 18504315
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pharmacological activation of normal and arrhythmia-associated mutant KCNQ1 potassium channels.
    Seebohm G; Pusch M; Chen J; Sanguinetti MC
    Circ Res; 2003 Nov; 93(10):941-7. PubMed ID: 14576198
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Insulin suppresses IKs (KCNQ1/KCNE1) currents, which require β-subunit KCNE1.
    Wu M; Obara Y; Norota I; Nagasawa Y; Ishii K
    Pflugers Arch; 2014 May; 466(5):937-46. PubMed ID: 24068254
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Physical and functional interaction sites in cytoplasmic domains of KCNQ1 and KCNE1 channel subunits.
    Chen J; Liu Z; Creagh J; Zheng R; McDonald TV
    Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H212-H222. PubMed ID: 31834838
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Two open states and rate-limiting gating steps revealed by intracellular Na+ block of human KCNQ1 and KCNQ1/KCNE1 K+ channels.
    Pusch M; Ferrera L; Friedrich T
    J Physiol; 2001 May; 533(Pt 1):135-43. PubMed ID: 11351022
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dominant-negative I(Ks) suppression by KCNQ1-deltaF339 potassium channels linked to Romano-Ward syndrome.
    Thomas D; Wimmer AB; Karle CA; Licka M; Alter M; Khalil M; Ulmer HE; Kathöfer S; Kiehn J; Katus HA; Schoels W; Koenen M; Zehelein J
    Cardiovasc Res; 2005 Aug; 67(3):487-97. PubMed ID: 15950200
    [TBL] [Abstract][Full Text] [Related]  

  • 75.
    Westhoff M; Eldstrom J; Murray CI; Thompson E; Fedida D
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7879-7888. PubMed ID: 30918124
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Photo-Cross-Linking of I
    Westhoff M; Murray CI; Eldstrom J; Fedida D
    Biophys J; 2017 Jul; 113(2):415-425. PubMed ID: 28746852
    [TBL] [Abstract][Full Text] [Related]  

  • 77. BACE1 modulates gating of KCNQ1 (Kv7.1) and cardiac delayed rectifier KCNQ1/KCNE1 (IKs).
    Agsten M; Hessler S; Lehnert S; Volk T; Rittger A; Hartmann S; Raab C; Kim DY; Groemer TW; Schwake M; Alzheimer C; Huth T
    J Mol Cell Cardiol; 2015 Dec; 89(Pt B):335-48. PubMed ID: 26454161
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The oxidant thimerosal modulates gating behavior of KCNQ1 by interaction with the channel outer shell.
    Kerst G; Brousos H; Schreiber R; Nitschke R; Hug MJ; Greger R; Bleich M
    J Membr Biol; 2002 Mar; 186(2):89-100. PubMed ID: 11944086
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights.
    Dixit G; Dabney-Smith C; Lorigan GA
    Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183148. PubMed ID: 31825788
    [TBL] [Abstract][Full Text] [Related]  

  • 80. De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero.
    Hong K; Piper DR; Diaz-Valdecantos A; Brugada J; Oliva A; Burashnikov E; Santos-de-Soto J; Grueso-Montero J; Diaz-Enfante E; Brugada P; Sachse F; Sanguinetti MC; Brugada R
    Cardiovasc Res; 2005 Dec; 68(3):433-40. PubMed ID: 16109388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.