These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21149735)

  • 61. Achieving error-free translation; the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution.
    Dock-Bregeon AC; Rees B; Torres-Larios A; Bey G; Caillet J; Moras D
    Mol Cell; 2004 Nov; 16(3):375-86. PubMed ID: 15525511
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA.
    Srinivasan G; James CM; Krzycki JA
    Science; 2002 May; 296(5572):1459-62. PubMed ID: 12029131
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structure-specific nuclease activities of Pyrococcus abyssi RNase HII.
    Le Laz S; Le Goaziou A; Henneke G
    J Bacteriol; 2010 Jul; 192(14):3689-98. PubMed ID: 20472790
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase.
    Sankaranarayanan R; Dock-Bregeon AC; Rees B; Bovee M; Caillet J; Romby P; Francklyn CS; Moras D
    Nat Struct Biol; 2000 Jun; 7(6):461-5. PubMed ID: 10881191
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Transfer RNA-mediated editing in threonyl-tRNA synthetase. The class II solution to the double discrimination problem.
    Dock-Bregeon A; Sankaranarayanan R; Romby P; Caillet J; Springer M; Rees B; Francklyn CS; Ehresmann C; Moras D
    Cell; 2000 Dec; 103(6):877-84. PubMed ID: 11136973
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cell-free protein synthesis for structure determination by X-ray crystallography.
    Watanabe M; Miyazono K; Tanokura M; Sawasaki T; Endo Y; Kobayashi I
    Methods Mol Biol; 2010; 607():149-60. PubMed ID: 20204855
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structure and function of the C-terminal domain of methionyl-tRNA synthetase.
    Crepin T; Schmitt E; Blanquet S; Mechulam Y
    Biochemistry; 2002 Oct; 41(43):13003-11. PubMed ID: 12390027
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molecular dynamics simulations show that bound Mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-tRNA synthetase through long range electrostatic interactions.
    Thompson D; Simonson T
    J Biol Chem; 2006 Aug; 281(33):23792-803. PubMed ID: 16774919
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structural basis for activation of an archaeal ribonuclease P RNA by protein cofactors.
    Kimura M
    Biosci Biotechnol Biochem; 2017 Sep; 81(9):1670-1680. PubMed ID: 28715256
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Threonyl-tRNA synthetase of archaea: importance of the discriminator base in the aminoacylation of threonine tRNA.
    Ishikura H; Nagaoka Y; Yokozawa J; Umehara T; Kuno A; Hasegawa T
    Nucleic Acids Symp Ser; 2000; (44):83-4. PubMed ID: 12903279
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Single TRAM domain RNA-binding proteins in Archaea: functional insight from Ctr3 from the Antarctic methanogen Methanococcoides burtonii.
    Taha ; Siddiqui KS; Campanaro S; Najnin T; Deshpande N; Williams TJ; Aldrich-Wright J; Wilkins M; Curmi PM; Cavicchioli R
    Environ Microbiol; 2016 Sep; 18(9):2810-24. PubMed ID: 26769275
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Archaeal NSUN6 catalyzes m5C72 modification on a wide-range of specific tRNAs.
    Li J; Li H; Long T; Dong H; Wang ED; Liu RJ
    Nucleic Acids Res; 2019 Feb; 47(4):2041-2055. PubMed ID: 30541086
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Assessment of solvent residues accessibility using three Sulfo-NHS-biotin reagents in parallel: application to footprint changes of a methyltransferase upon binding its substrate.
    Gabant G; Augier J; Armengaud J
    J Mass Spectrom; 2008 Mar; 43(3):360-70. PubMed ID: 17968972
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A substrate binding model for the KEOPS tRNA modifying complex.
    Beenstock J; Ona SM; Porat J; Orlicky S; Wan LCK; Ceccarelli DF; Maisonneuve P; Szilard RK; Yin Z; Setiaputra D; Mao DYL; Khan M; Raval S; Schriemer DC; Bayfield MA; Durocher D; Sicheri F
    Nat Commun; 2020 Dec; 11(1):6233. PubMed ID: 33277478
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Tetrameric structure of the restriction DNA glycosylase R.PabI in complex with nonspecific double-stranded DNA.
    Wang D; Miyazono KI; Tanokura M
    Sci Rep; 2016 Oct; 6():35197. PubMed ID: 27731370
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog.
    Osawa T; Inanaga H; Sato C; Numata T
    Mol Cell; 2015 May; 58(3):418-30. PubMed ID: 25921071
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The dawn of dominance by the mature domain in tRNA splicing.
    Tocchini-Valentini GD; Fruscoloni P; Tocchini-Valentini GP
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12300-5. PubMed ID: 17636125
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structural basis for duplex RNA recognition and cleavage by Archaeoglobus fulgidus C3PO.
    Parizotto EA; Lowe ED; Parker JS
    Nat Struct Mol Biol; 2013 Mar; 20(3):380-6. PubMed ID: 23353787
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The glycine-rich motif of Pyrococcus abyssi DNA polymerase D is critical for protein stability.
    Castrec B; Laurent S; Henneke G; Flament D; Raffin JP
    J Mol Biol; 2010 Mar; 396(4):840-8. PubMed ID: 20070946
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biogenesis of 2-agmatinylcytidine catalyzed by the dual protein and RNA kinase TiaS.
    Terasaka N; Kimura S; Osawa T; Numata T; Suzuki T
    Nat Struct Mol Biol; 2011 Oct; 18(11):1268-74. PubMed ID: 22002222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.