BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 21149736)

  • 1. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes.
    Miao YC; Liu CJ
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22728-33. PubMed ID: 21149736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis.
    Burla B; Pfrunder S; Nagy R; Francisco RM; Lee Y; Martinoia E
    Plant Physiol; 2013 Nov; 163(3):1446-58. PubMed ID: 24028845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AtABCG29 is a monolignol transporter involved in lignin biosynthesis.
    Alejandro S; Lee Y; Tohge T; Sudre D; Osorio S; Park J; Bovet L; Lee Y; Geldner N; Fernie AR; Martinoia E
    Curr Biol; 2012 Jul; 22(13):1207-12. PubMed ID: 22704988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequestration and transport of lignin monomeric precursors.
    Liu CJ; Miao YC; Zhang KW
    Molecules; 2011 Jan; 16(1):710-27. PubMed ID: 21245806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic differences in the uptake of salicylic acid glucose conjugates by vacuolar membrane-enriched vesicles isolated from Arabidopsis thaliana.
    Vaca E; Behrens C; Theccanat T; Choe JY; Dean JV
    Physiol Plant; 2017 Nov; 161(3):322-338. PubMed ID: 28665551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the role of the LkABCG36 transporter in lignin accumulation.
    Sun N; Wang Y; Kang J; Hao H; Liu X; Yang Y; Jiang X; Gai Y
    Plant Sci; 2024 Jun; 343():112059. PubMed ID: 38458573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis.
    Zhao J; Dixon RA
    Plant Cell; 2009 Aug; 21(8):2323-40. PubMed ID: 19684242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-dependent transport of reduced glutathione on YCF1, the yeast orthologue of mammalian multidrug resistance associated proteins.
    Rebbeor JF; Connolly GC; Dumont ME; Ballatori N
    J Biol Chem; 1998 Dec; 273(50):33449-54. PubMed ID: 9837923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of Anthocyanins and other Flavonoids by the Arabidopsis ATP-Binding Cassette Transporter AtABCC2.
    Behrens CE; Smith KE; Iancu CV; Choe JY; Dean JV
    Sci Rep; 2019 Jan; 9(1):437. PubMed ID: 30679715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant Vacuolar ATP-binding Cassette Transporters That Translocate Folates and Antifolates in Vitro and Contribute to Antifolate Tolerance in Vivo.
    Raichaudhuri A; Peng M; Naponelli V; Chen S; Sánchez-Fernández R; Gu H; Gregory JF; Hanson AD; Rea PA
    J Biol Chem; 2009 Mar; 284(13):8449-60. PubMed ID: 19136566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H(+)-antiport and ATP-binding cassette-type mechanisms.
    Frangne N; Eggmann T; Koblischke C; Weissenböck G; Martinoia E; Klein M
    Plant Physiol; 2002 Feb; 128(2):726-33. PubMed ID: 11842175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant cell biology: the ABC of monolignol transport.
    Sibout R; Höfte H
    Curr Biol; 2012 Jul; 22(13):R533-5. PubMed ID: 22790004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity.
    Jeon HS; Jang E; Kim J; Kim SH; Lee MH; Nam MH; Tobimatsu Y; Park OK
    Autophagy; 2023 Feb; 19(2):597-615. PubMed ID: 35652914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates.
    Klein M; Martinoia E; Hoffmann-Thoma G; Weissenböck G
    Plant J; 2000 Feb; 21(3):289-304. PubMed ID: 10758480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane.
    Wieczorek H; Putzenlechner M; Zeiske W; Klein U
    J Biol Chem; 1991 Aug; 266(23):15340-7. PubMed ID: 1831202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2.
    Schulz A; Beyhl D; Marten I; Wormit A; Neuhaus E; Poschet G; Büttner M; Schneider S; Sauer N; Hedrich R
    Plant J; 2011 Oct; 68(1):129-36. PubMed ID: 21668536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of acylated anthocyanins by the Arabidopsis ATP-binding cassette transporters AtABCC1, AtABCC2, and AtABCC14.
    Dean JV; Willis M; Shaban L
    Physiol Plant; 2022 Sep; 174(5):e13780. PubMed ID: 36121340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of plant vacuolar transporters mediating phosphate storage.
    Liu TY; Huang TK; Yang SY; Hong YT; Huang SM; Wang FN; Chiang SF; Tsai SY; Lu WC; Chiou TJ
    Nat Commun; 2016 Mar; 7():11095. PubMed ID: 27029856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vacuolar import of phosphatidylcholine requires the ATP-binding cassette transporter Ybt1.
    Gulshan K; Moye-Rowley WS
    Traffic; 2011 Sep; 12(9):1257-68. PubMed ID: 21649806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
    Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG
    Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.