These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Effects of cementation factors on the Cu nanoparticle deposit of Cu-multi-wall carbon nanotubes composites. Cho GS; Kim JW; Choe KH; Kim SS J Nanosci Nanotechnol; 2014 Oct; 14(10):7874-8. PubMed ID: 25942884 [TBL] [Abstract][Full Text] [Related]
24. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
25. Hybrid solar cells based on P3HT and Si@MWCNT nanocomposite. Chen L; Pan X; Zheng D; Gao Y; Jiang X; Xu M; Chen H Nanotechnology; 2010 Aug; 21(34):345201. PubMed ID: 20671361 [TBL] [Abstract][Full Text] [Related]
26. Clusterization, electrophoretic deposition, and photoelectrochemical properties of fullerene-functionalized carbon nanotube composites. Umeyama T; Tezuka N; Fujita M; Hayashi S; Kadota N; Matano Y; Imahori H Chemistry; 2008; 14(16):4875-85. PubMed ID: 18418839 [TBL] [Abstract][Full Text] [Related]
28. Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot-sensitized solar cell system. Zeng X; Xiong D; Zhang W; Ming L; Xu Z; Huang Z; Wang M; Chen W; Cheng YB Nanoscale; 2013 Aug; 5(15):6992-8. PubMed ID: 23800939 [TBL] [Abstract][Full Text] [Related]
29. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185 [TBL] [Abstract][Full Text] [Related]
30. Multi-walled carbon nanotube-based carbon/carbon composites with three-dimensional network structures. Jin Y; Zhang Y; Zhang Q; Zhang R; Li P; Qian W; Wei F Nanoscale; 2013 Jul; 5(13):6181-6. PubMed ID: 23733014 [TBL] [Abstract][Full Text] [Related]
31. A general route to prepare one- and three-dimensional carbon nanotube/metal nanoparticle composite nanostructures. Hu X; Wang T; Wang L; Guo S; Dong S Langmuir; 2007 May; 23(11):6352-7. PubMed ID: 17408292 [TBL] [Abstract][Full Text] [Related]
32. Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly. Zhang R; Wang X; Shiu KK J Colloid Interface Sci; 2007 Dec; 316(2):517-22. PubMed ID: 17904150 [TBL] [Abstract][Full Text] [Related]
36. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation. Cui SK; Guo DJ J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631 [TBL] [Abstract][Full Text] [Related]
37. On the synthesis and magnetic properties of multiwall carbon nanotube-superparamagnetic iron oxide nanoparticle nanocomposites. Narayanan TN; Mary AP; Shaijumon MM; Ci L; Ajayan PM; Anantharaman MR Nanotechnology; 2009 Feb; 20(5):055607. PubMed ID: 19417354 [TBL] [Abstract][Full Text] [Related]
38. Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces. Pumera M; Merkoçi A; Alegret S Electrophoresis; 2007 Apr; 28(8):1274-80. PubMed ID: 17366488 [TBL] [Abstract][Full Text] [Related]
39. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Randeniya LK; Bendavid A; Martin PJ; Tran CD Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629 [TBL] [Abstract][Full Text] [Related]
40. Novel in situ fabrication of chestnut-like carbon nanotube spheres from polypropylene and nickel formate. Chen X; He J; Yan C; Tang H J Phys Chem B; 2006 Nov; 110(43):21684-9. PubMed ID: 17064126 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]