BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 21149959)

  • 21. Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions.
    Zeng H; Li Z; Cai W; Cao B; Liu P; Yang S
    J Phys Chem B; 2007 Dec; 111(51):14311-7. PubMed ID: 18052150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO(2) nanotube arrays electrode for azo dye degradation.
    Zhang Z; Yuan Y; Liang L; Cheng Y; Shi G; Jin L
    J Hazard Mater; 2008 Oct; 158(2-3):517-22. PubMed ID: 18440136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Composition-tuned ZnO--CdSSe core--shell nanowire arrays.
    Myung Y; Jang DM; Sung TK; Sohn YJ; Jung GB; Cho YJ; Kim HS; Park J
    ACS Nano; 2010 Jul; 4(7):3789-800. PubMed ID: 20527802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method.
    Qiu J; Li X; He W; Park SJ; Kim HK; Hwang YH; Lee JH; Kim YD
    Nanotechnology; 2009 Apr; 20(15):155603. PubMed ID: 19420551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CdS-encapsulated TiO2 nanotube arrays lidded with ZnO nanorod layers and their photoelectrocatalytic applications.
    Zhang YN; Zhao G; Lei Y; Li P; Li M; Jin Y; Lv B
    Chemphyschem; 2010 Nov; 11(16):3491-8. PubMed ID: 20853387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy.
    Yan C; Xue D
    J Phys Chem B; 2006 Dec; 110(51):25850-5. PubMed ID: 17181231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response.
    Zhan WW; Kuang Q; Zhou JZ; Kong XJ; Xie ZX; Zheng LS
    J Am Chem Soc; 2013 Feb; 135(5):1926-33. PubMed ID: 23339400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Room temperature fabrication of hollow ZnS and ZnO architectures by a sacrificial template route.
    Yan C; Xue D
    J Phys Chem B; 2006 Apr; 110(14):7102-6. PubMed ID: 16599471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-temperature synthesis of CuInSe2 nanotube array on conducting glass substrates for solar cell application.
    Xu J; Luan CY; Tang YB; Chen X; Zapien JA; Zhang WJ; Kwong HL; Meng XM; Lee ST; Lee CS
    ACS Nano; 2010 Oct; 4(10):6064-70. PubMed ID: 20925392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications.
    Ma S; Li R; Lv C; Xu W; Gou X
    J Hazard Mater; 2011 Aug; 192(2):730-40. PubMed ID: 21684076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery.
    Ge X; Li Z; Wang C; Yin L
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26633-42. PubMed ID: 26572922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.
    Guzmán de Villoria R; Figueredo SL; Hart AJ; Steiner SA; Slocum AH; Wardle BL
    Nanotechnology; 2009 Oct; 20(40):405611. PubMed ID: 19752503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films.
    Mattia D; Rossi MP; Kim BM; Korneva G; Bau HH; Gogotsi Y
    J Phys Chem B; 2006 May; 110(20):9850-5. PubMed ID: 16706438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly.
    Sun X; Li Y
    Langmuir; 2005 Jun; 21(13):6019-24. PubMed ID: 15952855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aligned silver nanorod arrays as substrates for surface-enhanced infrared absorption spectroscopy.
    Leverette CL; Jacobs SA; Shanmukh S; Chaney SB; Dluhy RA; Zhao YP
    Appl Spectrosc; 2006 Aug; 60(8):906-13. PubMed ID: 16925927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures.
    Huang CW; Hsin CL; Wang CW; Chu FH; Kao CY; Chen JY; Huang YT; Lu KC; Wu WW; Chen LJ
    Nanoscale; 2012 Aug; 4(15):4702-6. PubMed ID: 22744608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomic layer deposition of Al-doped ZnO/Al2O3 double layers on vertically aligned carbon nanofiber arrays.
    Malek GA; Brown E; Klankowski SA; Liu J; Elliot AJ; Lu R; Li J; Wu J
    ACS Appl Mater Interfaces; 2014 May; 6(9):6865-71. PubMed ID: 24689702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ordered polythiophene/fullerene composite core-shell nanorod arrays for solar cell applications.
    Wang HS; Lin LH; Chen SY; Wang YL; Wei KH
    Nanotechnology; 2009 Feb; 20(7):075201. PubMed ID: 19417409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled growth of inorganic nanorod arrays using graphene nanodot seed layers.
    Kim YJ; Kim SS; Park JB; Sohn BH; Yi GC
    Nanotechnology; 2014 Apr; 25(13):135609. PubMed ID: 24598198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homogeneous core/shell ZnO/ZnMgO quantum well heterostructures on vertical ZnO nanowires.
    Cao BQ; Zúñiga-Pérez J; Boukos N; Czekalla C; Hilmer H; Lenzner J; Travlos A; Lorenz M; Grundmann M
    Nanotechnology; 2009 Jul; 20(30):305701. PubMed ID: 19584419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.