These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 21149959)

  • 41. Selective growth of ZnO nanorods on hydrophobic Si nanorod arrays.
    Lu MY; Wang YJ; Hong MH; Chiu CY; You SJ; Lu MP
    Nanotechnology; 2015 Feb; 26(5):055604. PubMed ID: 25590263
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TiO2 nanorod arrays functionalized with In2S3 shell layer by a low-cost route for solar energy conversion.
    Gan X; Li X; Gao X; Qiu J; Zhuge F
    Nanotechnology; 2011 Jul; 22(30):305601. PubMed ID: 21697580
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Super-long aligned TiO2/carbon nanotube arrays.
    Zhao Y; Hu Y; Li Y; Zhang H; Zhang S; Qu L; Shi G; Dai L
    Nanotechnology; 2010 Dec; 21(50):505702. PubMed ID: 21098930
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A simple low temperature synthesis route for ZnO-MgO core-shell nanowires.
    Plank NO; Snaith HJ; Ducati C; Bendall JS; Schmidt-Mende L; Welland ME
    Nanotechnology; 2008 Nov; 19(46):465603. PubMed ID: 21836250
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P; Gao PX; Goberman DG; Ding Y
    Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formation of well-aligned ZnGa(2)O(4) nanowires from Ga(2)O(3)/ZnO core-shell nanowires via a Ga(2)O(3)/ZnGa(2)O(4) epitaxial relationship.
    Chang KW; Wu JJ
    J Phys Chem B; 2005 Jul; 109(28):13572-7. PubMed ID: 16852699
    [TBL] [Abstract][Full Text] [Related]  

  • 47. C@ZnO nanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability.
    Liu J; Li Y; Jiang J; Huang X
    Dalton Trans; 2010 Oct; 39(37):8693-7. PubMed ID: 20714619
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol-gel-derived ZnO thin films.
    Dev A; Panda SK; Kar S; Chakrabarti S; Chaudhuri S
    J Phys Chem B; 2006 Jul; 110(29):14266-72. PubMed ID: 16854131
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A radially controlled ZnS interlayer on ultra-long ZnO-Gd
    Ranjith KS; Ranjith Kumar D; Ghoreishian SM; Huh YS; Han YK; Rajendra Kumar RT
    Nanoscale; 2020 Jul; 12(26):14047-14060. PubMed ID: 32582888
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays.
    Kar S; Dev A; Chaudhuri S
    J Phys Chem B; 2006 Sep; 110(36):17848-53. PubMed ID: 16956271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication and photoluminescent properties of heteroepitaxial ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures.
    Park WI; Yoo J; Kim DW; Yi GC; Kim M
    J Phys Chem B; 2006 Feb; 110(4):1516-9. PubMed ID: 16471707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of nano/micro zinc oxide rods and arrays by thermal evaporation approach on cylindrical shape substrate.
    Zhang Y; Wang L; Liu X; Yan Y; Chen C; Zhu J
    J Phys Chem B; 2005 Jul; 109(27):13091-3. PubMed ID: 16852628
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vertically aligned carbon-nanotube arrays showing Schottky behavior at room temperature.
    Jung SH; Jeong SH; Kim SU; Hwang SK; Lee PS; Lee KH; Ko JH; Bae E; Kang D; Park W; Oh H; Kim JJ; Kim H; Park CG
    Small; 2005 May; 1(5):553-9. PubMed ID: 17193485
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Voids, nanochannels and formation of nanotubes with mobile Sn fillings in Sn doped ZnO nanorods.
    Ortega Y; Dieker Ch; Jäger W; Piqueras J; Fernández P
    Nanotechnology; 2010 Jun; 21(22):225604. PubMed ID: 20453289
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Zinc Oxide Nanorods Shielded with an Ultrathin Nickel Layer: Tailoring of Physical Properties.
    Mudusu D; Nandanapalli KR; Dugasani SR; Park SH; Tu CW
    Sci Rep; 2016 Jun; 6():28561. PubMed ID: 27334555
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Superstrate CuInS2 photovoltaics with enhanced performance using a CdS/ZnO nanorod array.
    Lee D; Yong K
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6758-65. PubMed ID: 23163478
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application.
    Zhao X; Wang P; Li B
    Chem Commun (Camb); 2010 Sep; 46(36):6768-70. PubMed ID: 20730160
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method.
    Li S; Zhang X; Yan B; Yu T
    Nanotechnology; 2009 Dec; 20(49):495604. PubMed ID: 19893154
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis.
    Zeng H; Cai W; Liu P; Xu X; Zhou H; Klingshirn C; Kalt H
    ACS Nano; 2008 Aug; 2(8):1661-70. PubMed ID: 19206370
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-crystal gallium nitride nanotubes.
    Goldberger J; He R; Zhang Y; Lee S; Yan H; Choi HJ; Yang P
    Nature; 2003 Apr; 422(6932):599-602. PubMed ID: 12686996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.