These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 21149969)
1. Cryo-reconstructions of P22 polyheads suggest that phage assembly is nucleated by trimeric interactions among coat proteins. Parent KN; Sinkovits RS; Suhanovsky MM; Teschke CM; Egelman EH; Baker TS Phys Biol; 2010 Dec; 7(4):045004. PubMed ID: 21149969 [TBL] [Abstract][Full Text] [Related]
2. Polyhead formation in phage P22 pinpoints a region in coat protein required for conformational switching. Parent KN; Suhanovsky MM; Teschke CM Mol Microbiol; 2007 Sep; 65(5):1300-10. PubMed ID: 17680786 [TBL] [Abstract][Full Text] [Related]
3. Determinants of bacteriophage P22 polyhead formation: the role of coat protein flexibility in conformational switching. Suhanovsky MM; Parent KN; Dunn SE; Baker TS; Teschke CM Mol Microbiol; 2010 Sep; 77(6):1568-82. PubMed ID: 20659287 [TBL] [Abstract][Full Text] [Related]
4. A Molecular Staple: D-Loops in the I Domain of Bacteriophage P22 Coat Protein Make Important Intercapsomer Contacts Required for Procapsid Assembly. D'Lima NG; Teschke CM J Virol; 2015 Oct; 89(20):10569-79. PubMed ID: 26269173 [TBL] [Abstract][Full Text] [Related]
5. Quantitative analysis of multi-component spherical virus assembly: scaffolding protein contributes to the global stability of phage P22 procapsids. Parent KN; Zlotnick A; Teschke CM J Mol Biol; 2006 Jun; 359(4):1097-106. PubMed ID: 16697406 [TBL] [Abstract][Full Text] [Related]
6. Highly specific salt bridges govern bacteriophage P22 icosahedral capsid assembly: identification of the site in coat protein responsible for interaction with scaffolding protein. Cortines JR; Motwani T; Vyas AA; Teschke CM J Virol; 2014 May; 88(10):5287-97. PubMed ID: 24600011 [TBL] [Abstract][Full Text] [Related]
7. Visualization of the maturation transition in bacteriophage P22 by electron cryomicroscopy. Zhang Z; Greene B; Thuman-Commike PA; Jakana J; Prevelige PE; King J; Chiu W J Mol Biol; 2000 Mar; 297(3):615-26. PubMed ID: 10731416 [TBL] [Abstract][Full Text] [Related]
8. Bacteriophage P22 capsid size determination: roles for the coat protein telokin-like domain and the scaffolding protein amino-terminus. Suhanovsky MM; Teschke CM Virology; 2011 Sep; 417(2):418-29. PubMed ID: 21784500 [TBL] [Abstract][Full Text] [Related]
9. Identification of subunit-subunit interactions in bacteriophage P22 procapsids by chemical cross-linking and mass spectrometry. Kang S; Hawkridge AM; Johnson KL; Muddiman DC; Prevelige PE J Proteome Res; 2006 Feb; 5(2):370-7. PubMed ID: 16457603 [TBL] [Abstract][Full Text] [Related]
10. Role of the scaffolding protein in P22 procapsid size determination suggested by T = 4 and T = 7 procapsid structures. Thuman-Commike PA; Greene B; Malinski JA; King J; Chiu W Biophys J; 1998 Jan; 74(1):559-68. PubMed ID: 9449356 [TBL] [Abstract][Full Text] [Related]
11. GroEL/S substrate specificity based on substrate unfolding propensity. Parent KN; Teschke CM Cell Stress Chaperones; 2007; 12(1):20-32. PubMed ID: 17441504 [TBL] [Abstract][Full Text] [Related]
12. Of capsid structure and stability: The partnership between charged residues of E-loop and P-domain of the bacteriophage P22 coat protein. Asija K; Teschke CM Virology; 2019 Aug; 534():45-53. PubMed ID: 31176063 [TBL] [Abstract][Full Text] [Related]
13. The energetic contributions of scaffolding and coat proteins to the assembly of bacteriophage procapsids. Zlotnick A; Suhanovsky MM; Teschke CM Virology; 2012 Jun; 428(1):64-9. PubMed ID: 22520942 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional structure of scaffolding-containing phage p22 procapsids by electron cryo-microscopy. Thuman-Commike PA; Greene B; Jakana J; Prasad BV; King J; Prevelige PE; Chiu W J Mol Biol; 1996 Jul; 260(1):85-98. PubMed ID: 8676394 [TBL] [Abstract][Full Text] [Related]
15. Electrostatic interactions govern both nucleation and elongation during phage P22 procapsid assembly. Parent KN; Doyle SM; Anderson E; Teschke CM Virology; 2005 Sep; 340(1):33-45. PubMed ID: 16045955 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Chen DH; Baker ML; Hryc CF; DiMaio F; Jakana J; Wu W; Dougherty M; Haase-Pettingell C; Schmid MF; Jiang W; Baker D; King JA; Chiu W Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1355-60. PubMed ID: 21220301 [TBL] [Abstract][Full Text] [Related]
17. P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks. Parent KN; Khayat R; Tu LH; Suhanovsky MM; Cortines JR; Teschke CM; Johnson JE; Baker TS Structure; 2010 Mar; 18(3):390-401. PubMed ID: 20223221 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of scaffolding-directed virus assembly suggested by comparison of scaffolding-containing and scaffolding-lacking P22 procapsids. Thuman-Commike PA; Greene B; Malinski JA; Burbea M; McGough A; Chiu W; Prevelige PE Biophys J; 1999 Jun; 76(6):3267-77. PubMed ID: 10354452 [TBL] [Abstract][Full Text] [Related]
19. Phage P22 procapsids equilibrate with free coat protein subunits. Parent KN; Suhanovsky MM; Teschke CM J Mol Biol; 2007 Jan; 365(2):513-22. PubMed ID: 17067636 [TBL] [Abstract][Full Text] [Related]
20. 'Let the phage do the work': using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants. Teschke CM; Parent KN Virology; 2010 Jun; 401(2):119-30. PubMed ID: 20236676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]