BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21150266)

  • 1. Alfy-dependent elimination of aggregated proteins by macroautophagy: can there be too much of a good thing?
    Yamamoto A; Simonsen A
    Autophagy; 2011 Mar; 7(3):346-50. PubMed ID: 21150266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy.
    Filimonenko M; Isakson P; Finley KD; Anderson M; Jeong H; Melia TJ; Bartlett BJ; Myers KM; Birkeland HC; Lamark T; Krainc D; Brech A; Stenmark H; Simonsen A; Yamamoto A
    Mol Cell; 2010 Apr; 38(2):265-79. PubMed ID: 20417604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures.
    Lystad AH; Ichimura Y; Takagi K; Yang Y; Pankiv S; Kanegae Y; Kageyama S; Suzuki M; Saito I; Mizushima T; Komatsu M; Simonsen A
    EMBO Rep; 2014 May; 15(5):557-65. PubMed ID: 24668264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of ALFY in selective autophagy.
    Isakson P; Holland P; Simonsen A
    Cell Death Differ; 2013 Jan; 20(1):12-20. PubMed ID: 22653340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy.
    Clausen TH; Lamark T; Isakson P; Finley K; Larsen KB; Brech A; Øvervatn A; Stenmark H; Bjørkøy G; Simonsen A; Johansen T
    Autophagy; 2010 Apr; 6(3):330-44. PubMed ID: 20168092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Huntington's Disease Pathogenesis Is Modified In Vivo by Alfy/Wdfy3 and Selective Macroautophagy.
    Fox LM; Kim K; Johnson CW; Chen S; Croce KR; Victor MB; Eenjes E; Bosco JR; Randolph LK; Dragatsis I; Dragich JM; Yoo AS; Yamamoto A
    Neuron; 2020 Mar; 105(5):813-821.e6. PubMed ID: 31899071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interaction between sequestosome-1/p62 and autophagy-linked FYVE-containing protein WDFY3 in human osteoclasts.
    Hocking LJ; Mellis DJ; McCabe PS; Helfrich MH; Rogers MJ
    Biochem Biophys Res Commun; 2010 Nov; 402(3):543-8. PubMed ID: 20971078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The autophagy scaffold protein ALFY is critical for the granulocytic differentiation of AML cells.
    Schläfli AM; Isakson P; Garattini E; Simonsen A; Tschan MP
    Sci Rep; 2017 Oct; 7(1):12980. PubMed ID: 29021535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes.
    Simonsen A; Birkeland HC; Gillooly DJ; Mizushima N; Kuma A; Yoshimori T; Slagsvold T; Brech A; Stenmark H
    J Cell Sci; 2004 Aug; 117(Pt 18):4239-51. PubMed ID: 15292400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ALFY localizes to early endosomes and cellular protrusions to facilitate directional cell migration.
    Søreng K; Pankiv S; Bergsmark C; Haugsten EM; Dahl AK; de la Ballina LR; Yamamoto A; Lystad AH; Simonsen A
    J Cell Sci; 2022 Feb; 135(4):. PubMed ID: 35099014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The GST-BHMT assay reveals a distinct mechanism underlying proteasome inhibition-induced macroautophagy in mammalian cells.
    Rui YN; Xu Z; Chen Z; Zhang S
    Autophagy; 2015; 11(5):812-32. PubMed ID: 25984893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly conserved glutamic acid in ALFY inhibits membrane binding to aid in aggregate clearance.
    Reinhart EF; Litt NA; Katzenell S; Pellegrini M; Yamamoto A; Ragusa MJ
    Traffic; 2021 Jan; 22(1-2):23-37. PubMed ID: 33225481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing aggregate formation and aggregate clearance using cell-based assays.
    Eenjes E; Dragich JM; Kampinga HH; Yamamoto A
    J Cell Sci; 2016 Mar; 129(6):1260-70. PubMed ID: 26818841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NIPSNAP1 and NIPSNAP2 Act as "Eat Me" Signals for Mitophagy.
    Princely Abudu Y; Pankiv S; Mathai BJ; Håkon Lystad A; Bindesbøll C; Brenne HB; Yoke Wui Ng M; Thiede B; Yamamoto A; Mutugi Nthiga T; Lamark T; Esguerra CV; Johansen T; Simonsen A
    Dev Cell; 2019 May; 49(4):509-525.e12. PubMed ID: 30982665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trafficking and signaling in mammalian autophagy.
    Tooze SA; Jefferies HB; Kalie E; Longatti A; McAlpine FE; McKnight NC; Orsi A; Polson HE; Razi M; Robinson DJ; Webber JL
    IUBMB Life; 2010 Jul; 62(7):503-8. PubMed ID: 20552641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmembrane signaling by asymmetry.
    Stock AM
    Nat Struct Mol Biol; 2006 Oct; 13(10):862-3. PubMed ID: 17021619
    [No Abstract]   [Full Text] [Related]  

  • 17. Fighting disease by selective autophagy of aggregate-prone proteins.
    Knaevelsrud H; Simonsen A
    FEBS Lett; 2010 Jun; 584(12):2635-45. PubMed ID: 20412801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts.
    Kato M; Ospelt C; Gay RE; Gay S; Klein K
    Arthritis Rheumatol; 2014 Jan; 66(1):40-8. PubMed ID: 24449574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1.
    Korkmaz G; le Sage C; Tekirdag KA; Agami R; Gozuacik D
    Autophagy; 2012 Feb; 8(2):165-76. PubMed ID: 22248718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A.
    Davies AK; Itzhak DN; Edgar JR; Archuleta TL; Hirst J; Jackson LP; Robinson MS; Borner GHH
    Nat Commun; 2018 Sep; 9(1):3958. PubMed ID: 30262884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.