These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 21150352)
1. Correcting HIV prevalence estimates for survey nonparticipation using Heckman-type selection models. Bärnighausen T; Bor J; Wandira-Kazibwe S; Canning D Epidemiology; 2011 Jan; 22(1):27-35. PubMed ID: 21150352 [TBL] [Abstract][Full Text] [Related]
2. Using interviewer random effects to remove selection bias from HIV prevalence estimates. McGovern ME; Bärnighausen T; Salomon JA; Canning D BMC Med Res Methodol; 2015 Feb; 15():8. PubMed ID: 25656226 [TBL] [Abstract][Full Text] [Related]
3. Adjusting HIV prevalence estimates for non-participation: an application to demographic surveillance. McGovern ME; Marra G; Radice R; Canning D; Newell ML; Bärnighausen T J Int AIDS Soc; 2015; 18(1):19954. PubMed ID: 26613900 [TBL] [Abstract][Full Text] [Related]
4. National HIV prevalence estimates for sub-Saharan Africa: controlling selection bias with Heckman-type selection models. Hogan DR; Salomon JA; Canning D; Hammitt JK; Zaslavsky AM; Bärnighausen T Sex Transm Infect; 2012 Dec; 88 Suppl 2(Suppl_2):i17-23. PubMed ID: 23172342 [TBL] [Abstract][Full Text] [Related]
5. On the assumption of bivariate normality in selection models: a Copula approach applied to estimating HIV prevalence. McGovern ME; Bärnighausen T; Marra G; Radice R Epidemiology; 2015 Mar; 26(2):229-37. PubMed ID: 25643102 [TBL] [Abstract][Full Text] [Related]
6. Correcting for selection bias in HIV prevalence estimates: an application of sample selection models using data from population-based HIV surveys in seven sub-Saharan African countries. Palma AM; Marra G; Bray R; Saito S; Awor AC; Jalloh MF; Kailembo A; Kirungi W; Mgomella GS; Njau P; Voetsch AC; Ward JA; Bärnighausen T; Harling G J Int AIDS Soc; 2022 Aug; 25(8):e25954. PubMed ID: 35929226 [TBL] [Abstract][Full Text] [Related]
7. Heckman-type selection models to obtain unbiased estimates with missing measures outcome: theoretical considerations and an application to missing birth weight data. Koné S; Bonfoh B; Dao D; Koné I; Fink G BMC Med Res Methodol; 2019 Dec; 19(1):231. PubMed ID: 31815610 [TBL] [Abstract][Full Text] [Related]
8. Validation, replication, and sensitivity testing of Heckman-type selection models to adjust estimates of HIV prevalence. Clark SJ; Houle B PLoS One; 2014; 9(11):e112563. PubMed ID: 25402333 [TBL] [Abstract][Full Text] [Related]
9. National South African HIV prevalence estimates robust despite substantial test non-participation. Harling G; Moyo S; McGovern ME; Mabaso M; Marra G; Bärnighausen T; Rehle T S Afr Med J; 2017 Jun; 107(7):590-594. PubMed ID: 29025448 [TBL] [Abstract][Full Text] [Related]
10. Implications of the HIV testing protocol for refusal bias in seroprevalence surveys. Reniers G; Araya T; Berhane Y; Davey G; Sanders EJ BMC Public Health; 2009 May; 9():163. PubMed ID: 19476618 [TBL] [Abstract][Full Text] [Related]
11. Underestimation of HIV prevalence in surveys when some people already know their status, and ways to reduce the bias. Floyd S; Molesworth A; Dube A; Crampin AC; Houben R; Chihana M; Price A; Kayuni N; Saul J; French N; Glynn JR AIDS; 2013 Jan; 27(2):233-42. PubMed ID: 22842993 [TBL] [Abstract][Full Text] [Related]
12. Multiple imputation for non-response when estimating HIV prevalence using survey data. Chinomona A; Mwambi H BMC Public Health; 2015 Oct; 15():1059. PubMed ID: 26475303 [TBL] [Abstract][Full Text] [Related]
13. Studying dynamics of the HIV epidemic: population-based data compared with sentinel surveillance in Zambia. Fylkesnes K; Ndhlovu Z; Kasumba K; Mubanga Musonda R; Sichone M AIDS; 1998 Jul; 12(10):1227-34. PubMed ID: 9677172 [TBL] [Abstract][Full Text] [Related]
14. Refusal bias in the estimation of HIV prevalence. Janssens W; van der Gaag J; Rinke de Wit TF; Tanović Z Demography; 2014 Jun; 51(3):1131-57. PubMed ID: 24788481 [TBL] [Abstract][Full Text] [Related]
15. Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers. McGovern ME; Canning D; Bärnighausen T Econ Lett; 2018 Oct; 171():239-244. PubMed ID: 30294055 [TBL] [Abstract][Full Text] [Related]
16. Refusal bias in HIV prevalence estimates from nationally representative seroprevalence surveys. Reniers G; Eaton J AIDS; 2009 Mar; 23(5):621-9. PubMed ID: 19182677 [TBL] [Abstract][Full Text] [Related]
17. The prevalence of HIV among adults with pulmonary TB at a population level in Zambia. Chanda-Kapata P; Kapata N; Klinkenberg E; Grobusch MP; Cobelens F BMC Infect Dis; 2017 Mar; 17(1):236. PubMed ID: 28356081 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of bias in HIV seroprevalence estimates from national household surveys. Mishra V; Barrere B; Hong R; Khan S Sex Transm Infect; 2008 Aug; 84 Suppl 1(Suppl_1):i63-i70. PubMed ID: 18647869 [TBL] [Abstract][Full Text] [Related]
19. Demographic and AIDS-related characteristics of consenters to a population-based HIV-survey: results from a pilot study in Arusha, Tanzania. Ole-King'Ori N; Klepp KI; Kissila PE; Biswalo PM; Mnyika KS East Afr Med J; 1994 Aug; 71(8):483-9. PubMed ID: 7867536 [TBL] [Abstract][Full Text] [Related]
20. Assessing response bias from missing quality of life data: the Heckman method. Sales AE; Plomondon ME; Magid DJ; Spertus JA; Rumsfeld JS Health Qual Life Outcomes; 2004 Sep; 2():49. PubMed ID: 15373945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]