These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2115085)

  • 1. Confocal fluorescence microscopy: some applications in bone cell biology.
    Jones SJ; Taylor ML
    J Microsc; 1990 May; 158(Pt 2):249-59. PubMed ID: 2115085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial organization of microfilaments and vitronectin receptor, alpha v beta 3, in osteoclasts. A study using confocal laser scanning microscopy.
    Lakkakorpi PT; Helfrich MH; Horton MA; Väänänen HK
    J Cell Sci; 1993 Mar; 104 ( Pt 3)():663-70. PubMed ID: 7686168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zyxin and vinculin distribution at the cell-extracellular matrix attachment complex (CMAX) in corneal epithelial tissue are actin dependent.
    Svoboda KK; Orlow DL; Ashrafzadeh A; Jirawuthiworavong G
    Anat Rec; 1999 Mar; 254(3):336-47. PubMed ID: 10096665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of fluoride on the patterns of adherence of osteoclasts cultured on and resorbing dentine: a 3-D assessment of vinculin-labelled cells using confocal optical microscopy.
    Taylor ML; Boyde A; Jones SJ
    Anat Embryol (Berl); 1989; 180(5):427-35. PubMed ID: 2515773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of F-actin, vinculin and integrin subunits (alpha 6 and beta 4) in response to corneal substrata.
    Wu XY; Svoboda KK; Trinkaus-Randall V
    Exp Eye Res; 1995 Apr; 60(4):445-58. PubMed ID: 7789424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence in the tandem scanning microscope.
    Boyde A; Jones SJ; Taylor ML; Wolfe LA; Watson TF
    J Microsc; 1990 Jan; 157(Pt 1):39-49. PubMed ID: 2405160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High temporal and spatial resolution studies of bone cells using real-time confocal reflection microscopy.
    Boyde A; Vesely P; Gray C; Jones SJ
    Scanning; 1994; 16(5):285-94. PubMed ID: 7994489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An EDTA-KOH method to expose bone cells for scanning electron microscopy.
    Abe K; Hashizume H; Ushiki T
    J Electron Microsc (Tokyo); 1992 Apr; 41(2):113-5. PubMed ID: 1506802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and histological studies on various bone cell preparations.
    Nijweide PJ; van der Plas A; Scherft JP
    Calcif Tissue Int; 1981; 33(5):529-40. PubMed ID: 6274487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a beta 3 integrin is colocalized with vinculin and talin in the podosomes of osteoclastoma giant cells.
    Zambonin-Zallone A; Teti A; Grano M; Rubinacci A; Abbadini M; Gaboli M; Marchisio PC
    Exp Cell Res; 1989 Jun; 182(2):645-52. PubMed ID: 2542071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myofibrillar and cytoskeletal assembly in neonatal rat cardiac myocytes cultured on laminin and collagen.
    Hilenski LL; Terracio L; Borg TK
    Cell Tissue Res; 1991 Jun; 264(3):577-87. PubMed ID: 1907887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast.
    Akisaka T; Yoshida H; Inoue S; Shimizu K
    J Bone Miner Res; 2001 Jul; 16(7):1248-55. PubMed ID: 11450700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Morpho-functional correlations of the structure of bone cells and adjoining bone matrix in the developing bone].
    Doktorov AA; Denisov-Nikol'skiĭ IuI
    Arkh Anat Gistol Embriol; 1991 Jan; 100(1):68-74. PubMed ID: 2053868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The osteopetrotic rabbit: skeletal cytology and ultrastructure.
    Marks SC; MacKay CA; Seifert MF
    Am J Anat; 1987 Mar; 178(3):300-7. PubMed ID: 3578090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast-like cells complete osteoclastic bone resorption and form new mineralized bone matrix in vitro.
    Mulari MT; Qu Q; Härkönen PL; Väänänen HK
    Calcif Tissue Int; 2004 Sep; 75(3):253-61. PubMed ID: 15148559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesion patterns and cytoskeleton of rabbit osteoclasts on bone slices and glass.
    Turksen K; Kanehisa J; Opas M; Heersche JN; Aubin JE
    J Bone Miner Res; 1988 Aug; 3(4):389-400. PubMed ID: 3223354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the cytoskeleton of isolated chick osteoclasts: effect of calcitonin.
    Hunter SJ; Schraer H; Gay CV
    J Histochem Cytochem; 1989 Oct; 37(10):1529-37. PubMed ID: 2778308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiments with osteoblasts cultured under hypergravity conditions.
    Kacena MA; Todd P; Gerstenfeld LC; Landis WJ
    Microgravity Sci Technol; 2004; 15(1):28-34. PubMed ID: 15773019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption.
    Bozec L; de Groot J; Odlyha M; Nicholls B; Nesbitt S; Flanagan A; Horton M
    Ultramicroscopy; 2005 Nov; 105(1-4):79-89. PubMed ID: 16125320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ imaging of the autonomous intracellular Ca(2+) oscillations of osteoblasts and osteocytes in bone.
    Ishihara Y; Sugawara Y; Kamioka H; Kawanabe N; Kurosaka H; Naruse K; Yamashiro T
    Bone; 2012 Apr; 50(4):842-52. PubMed ID: 22316656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.