BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 21151200)

  • 41. The role of protein kinase C activation in diabetic nephropathy.
    Noh H; King GL
    Kidney Int Suppl; 2007 Aug; (106):S49-53. PubMed ID: 17653211
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unveiling the pathogenesis and therapeutic approaches for diabetic nephropathy: insights from panvascular diseases.
    Zhang X; Zhang J; Ren Y; Sun R; Zhai X
    Front Endocrinol (Lausanne); 2024; 15():1368481. PubMed ID: 38455648
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update.
    Arora MK; Singh UK
    Vascul Pharmacol; 2013 Apr; 58(4):259-71. PubMed ID: 23313806
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxidative stress as a major culprit in kidney disease in diabetes.
    Forbes JM; Coughlan MT; Cooper ME
    Diabetes; 2008 Jun; 57(6):1446-54. PubMed ID: 18511445
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lycium chinense leaves extract ameliorates diabetic nephropathy by suppressing hyperglycemia mediated renal oxidative stress and inflammation.
    Olatunji OJ; Chen H; Zhou Y
    Biomed Pharmacother; 2018 Jun; 102():1145-1151. PubMed ID: 29710532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic memory and diabetic nephropathy: Beneficial effects of natural epigenetic modifiers.
    Kushwaha K; Sharma S; Gupta J
    Biochimie; 2020 Mar; 170():140-151. PubMed ID: 31954720
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advanced glycation endproducts and diabetic nephropathy.
    Makita Z; Yanagisawa K; Kuwajima S; Yoshioka N; Atsumi T; Hasunuma Y; Koike T
    J Diabetes Complications; 1995; 9(4):265-8. PubMed ID: 8573743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Loganin attenuates diabetic nephropathy in C57BL/6J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products.
    Liu K; Xu H; Lv G; Liu B; Lee MK; Lu C; Lv X; Wu Y
    Life Sci; 2015 Feb; 123():78-85. PubMed ID: 25623853
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diabetic nephropathy--a review of the natural history, burden, risk factors and treatment.
    Ayodele OE; Alebiosu CO; Salako BL
    J Natl Med Assoc; 2004 Nov; 96(11):1445-54. PubMed ID: 15586648
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Renal endothelial dysfunction in diabetic nephropathy.
    Cheng H; Harris RC
    Cardiovasc Hematol Disord Drug Targets; 2014; 14(1):22-33. PubMed ID: 24720460
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inflammatory cytokines in diabetic nephropathy.
    Donate-Correa J; Martín-Núñez E; Muros-de-Fuentes M; Mora-Fernández C; Navarro-González JF
    J Diabetes Res; 2015; 2015():948417. PubMed ID: 25785280
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Therapies on the Horizon for Diabetic Kidney Disease.
    Khan SS; Quaggin SE
    Curr Diab Rep; 2015 Dec; 15(12):111. PubMed ID: 26458382
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ibrolipim attenuates early-stage nephropathy in diet-induced diabetic minipigs: Focus on oxidative stress and fibrogenesis.
    Liu Y; Li H; Wang S; Yin W; Wang Z
    Biomed Pharmacother; 2020 Sep; 129():110321. PubMed ID: 32535382
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression.
    Alhaider AA; Korashy HM; Sayed-Ahmed MM; Mobark M; Kfoury H; Mansour MA
    Chem Biol Interact; 2011 Jul; 192(3):233-42. PubMed ID: 21457706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synergistic contributions of carbonyl stress and megsin in diabetic nephropathy.
    Inagi R; Nangaku M; Miyata T
    Ann N Y Acad Sci; 2005 Jun; 1043():605-8. PubMed ID: 16037283
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nepeta angustifolia C. Y. Wu improves renal injury in HFD/STZ-induced diabetic nephropathy and inhibits oxidative stress-induced apoptosis of mesangial cells.
    Huang S; Tan M; Guo F; Dong L; Liu Z; Yuan R; Dongzhi Z; Lee DS; Wang Y; Li B
    J Ethnopharmacol; 2020 Jun; 255():112771. PubMed ID: 32201300
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Urotensin-II level and its association with oxidative stress in early diabetic nephropathy.
    Tabur S; Korkmaz H; Eren MA; Oğuz E; Sabuncu T; Aksoy N
    J Diabetes Complications; 2015; 29(1):115-9. PubMed ID: 25179234
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hordenine protects against hyperglycemia-associated renal complications in streptozotocin-induced diabetic mice.
    Su S; Cao M; Wu G; Long Z; Cheng X; Fan J; Xu Z; Su H; Hao Y; Li G; Peng J; Li S; Wang X
    Biomed Pharmacother; 2018 Aug; 104():315-324. PubMed ID: 29775900
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Potential therapeutic targets for diabetic nephropathy].
    Makino Y; Haneda M
    Nihon Rinsho; 2009 Aug; 67(8):1627-35. PubMed ID: 19768953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of nitric oxide in diabetic nephropathy.
    Prabhakar SS
    Semin Nephrol; 2004 Jul; 24(4):333-44. PubMed ID: 15252773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.