BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 21151200)

  • 61. Renal redox stress and remodeling in metabolic syndrome, type 2 diabetes mellitus, and diabetic nephropathy: paying homage to the podocyte.
    Hayden MR; Whaley-Connell A; Sowers JR
    Am J Nephrol; 2005; 25(6):553-69. PubMed ID: 16210838
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Diabetes and nephropathy.
    Caramori ML; Mauer M
    Curr Opin Nephrol Hypertens; 2003 May; 12(3):273-82. PubMed ID: 12698065
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Diabetic Nephropathy: Pathogenesis to Cure.
    Kushwaha K; Kabra U; Dubey R; Gupta J
    Curr Drug Targets; 2022; 23(15):1418-1429. PubMed ID: 35993461
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Zinc supplementation alleviates the progression of diabetic nephropathy by inhibiting the overexpression of oxidative-stress-mediated molecular markers in streptozotocin-induced experimental rats.
    Barman S; Pradeep SR; Srinivasan K
    J Nutr Biochem; 2018 Apr; 54():113-129. PubMed ID: 29331868
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications.
    Kang Q; Yang C
    Redox Biol; 2020 Oct; 37():101799. PubMed ID: 33248932
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes.
    Jha JC; Ho F; Dan C; Jandeleit-Dahm K
    Clin Sci (Lond); 2018 Aug; 132(16):1811-1836. PubMed ID: 30166499
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy.
    Singh DK; Winocour P; Farrington K
    Nat Clin Pract Nephrol; 2008 Apr; 4(4):216-26. PubMed ID: 18268525
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Diabetic Nephropathy: Significance of Determining Oxidative Stress and Opportunities for Antioxidant Therapies.
    Darenskaya M; Kolesnikov S; Semenova N; Kolesnikova L
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569752
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Endothelial dysfunction in diabetes mellitus.
    Hadi HA; Suwaidi JA
    Vasc Health Risk Manag; 2007; 3(6):853-76. PubMed ID: 18200806
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Carbonyl stress in the pathogenesis of diabetic nephropathy.
    Suzuki D; Miyata T
    Intern Med; 1999 Apr; 38(4):309-14. PubMed ID: 10361902
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Diabetic nephropathy -- a multifaceted target of new therapies.
    Choudhury D; Tuncel M; Levi M
    Discov Med; 2010 Nov; 10(54):406-15. PubMed ID: 21122472
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway.
    Yang S; Ma C; Wu H; Zhang H; Yuan F; Yang G; Yang Q; Jia L; Liang Z; Kang L
    Pharmacol Res; 2020 Mar; 153():104678. PubMed ID: 32014572
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Caveolin-1 in the Pathogenesis of Diabetic Nephropathy: Potential Therapeutic Target?
    Van Krieken R; Krepinsky JC
    Curr Diab Rep; 2017 Mar; 17(3):19. PubMed ID: 28283950
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Pathophysiology of the diabetic kidney.
    Vallon V; Komers R
    Compr Physiol; 2011 Jul; 1(3):1175-232. PubMed ID: 23733640
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-κB pathway.
    Ji X; Li C; Ou Y; Li N; Yuan K; Yang G; Chen X; Yang Z; Liu B; Cheung WW; Wang L; Huang R; Lan T
    Mol Cell Endocrinol; 2016 Dec; 437():268-279. PubMed ID: 27378149
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Small Molecule Inhibiting Nuclear Factor-kB Ameliorates Oxidative Stress and Suppresses Renal Inflammation in Early Stage of Alloxan-Induced Diabetic Nephropathy in Rat.
    Borgohain MP; Lahkar M; Ahmed S; Chowdhury L; Kumar S; Pant R; Choubey A
    Basic Clin Pharmacol Toxicol; 2017 May; 120(5):442-449. PubMed ID: 27888584
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production.
    Prabhakar S; Starnes J; Shi S; Lonis B; Tran R
    J Am Soc Nephrol; 2007 Nov; 18(11):2945-52. PubMed ID: 17928507
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Advanced glycation end products and diabetic nephropathy.
    Thomas MC; Forbes JM; Cooper ME
    Am J Ther; 2005; 12(6):562-72. PubMed ID: 16280650
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nordihydroguairetic acid, a lignin, prevents oxidative stress and the development of diabetic nephropathy in rats.
    Anjaneyulu M; Chopra K
    Pharmacology; 2004 Sep; 72(1):42-50. PubMed ID: 15292654
    [TBL] [Abstract][Full Text] [Related]  

  • 80. AMPK allostery: A therapeutic target for the management/treatment of diabetic nephropathy.
    Ayinde KS; Olaoba OT; Ibrahim B; Lei D; Lu Q; Yin X; Adelusi TI
    Life Sci; 2020 Nov; 261():118455. PubMed ID: 32956662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.