These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 21151238)
1. Aberrations of anamorphic optical systems III: the primary aberration theory for toroidal anamorphic systems. Yuan S; Sasian J Appl Opt; 2010 Dec; 49(35):6802-7. PubMed ID: 21151238 [TBL] [Abstract][Full Text] [Related]
2. Aberrations of anamorphic optical systems. II. Primary aberration theory for cylindrical anamorphic systems. Yuan S; Sasian J Appl Opt; 2009 May; 48(15):2836-41. PubMed ID: 19458731 [TBL] [Abstract][Full Text] [Related]
3. Aberrations of anamorphic optical systems. I: The first-order foundation and method for deriving the anamorphic primary aberration coefficients. Yuan S; Sasian J Appl Opt; 2009 May; 48(13):2574-84. PubMed ID: 19412218 [TBL] [Abstract][Full Text] [Related]
4. Thin lens aberrations for anamorphic lenses. Zhang J; Chen X; Liu H; Li F; Sun X Appl Opt; 2019 Jan; 58(1):182-188. PubMed ID: 30645528 [TBL] [Abstract][Full Text] [Related]
5. Application of the see-saw method to all refracting optical systems. Rosete-Aguilar M Appl Opt; 1996 Apr; 35(10):1659-68. PubMed ID: 21085287 [TBL] [Abstract][Full Text] [Related]
6. Aberration theory of plane-symmetric grating systems. Lu LJ J Synchrotron Radiat; 2008 Jul; 15(Pt 4):399-410. PubMed ID: 18552434 [TBL] [Abstract][Full Text] [Related]
7. Calculation of aberration coefficients by ray tracing. Oral M; Lencová B Ultramicroscopy; 2009 Oct; 109(11):1365-73. PubMed ID: 19647367 [TBL] [Abstract][Full Text] [Related]
8. Geometric characteristics of aberrations of plane-symmetric optical systems. Lu LJ; Deng ZY Appl Opt; 2009 Dec; 48(36):6946-60. PubMed ID: 20029597 [TBL] [Abstract][Full Text] [Related]
9. Fifth-order field aberration coefficients for an optical surface of rotational symmetry. Gaj M Appl Opt; 1971 Jul; 10(7):1642-7. PubMed ID: 20111179 [TBL] [Abstract][Full Text] [Related]
10. Third-order spherical aberration correction using multistage self-aligned quadrupole correction-lens systems. Tamura K; Okayama S; Shimizu R J Electron Microsc (Tokyo); 2010; 59(3):197-206. PubMed ID: 20086186 [TBL] [Abstract][Full Text] [Related]
11. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: the comatic aberrations. Thompson KP J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1490-504. PubMed ID: 20508720 [TBL] [Abstract][Full Text] [Related]
13. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils. Mahajan VN Appl Opt; 2010 Dec; 49(36):6924-9. PubMed ID: 21173827 [TBL] [Abstract][Full Text] [Related]
14. Image field distribution model of wavefront aberration and models of distortion and field curvature. Matsuzawa T J Opt Soc Am A Opt Image Sci Vis; 2011 Feb; 28(2):96-110. PubMed ID: 21293515 [TBL] [Abstract][Full Text] [Related]
15. Seidel aberration coefficients: an alternative computational method. Lin PD; Johnson RB Opt Express; 2019 Jul; 27(14):19712-19725. PubMed ID: 31503727 [TBL] [Abstract][Full Text] [Related]
17. Generalized chromatic aberrations in non-rotationally symmetric optical systems-Part II: applications. Cai D; Gross H Appl Opt; 2021 Jul; 60(21):6322-6330. PubMed ID: 34613300 [TBL] [Abstract][Full Text] [Related]
18. Basic theory of a four-lens optical system design. Sakin J; Sakin L Appl Opt; 1996 Feb; 35(4):572-81. PubMed ID: 21069041 [TBL] [Abstract][Full Text] [Related]
19. Sixth-order wave aberration theory of ultrawide-angle optical systems. Lu L; Cao Y Appl Opt; 2017 Oct; 56(30):8570-8583. PubMed ID: 29091641 [TBL] [Abstract][Full Text] [Related]