BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21152088)

  • 1. Alkalizing reactions streamline cellular metabolism in acidogenic microorganisms.
    Arioli S; Ragg E; Scaglioni L; Fessas D; Signorelli M; Karp M; Daffonchio D; De Noni I; Mulas L; Oggioni M; Guglielmetti S; Mora D
    PLoS One; 2010 Nov; 5(11):e15520. PubMed ID: 21152088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Streptococcus thermophilus, Ammonia from Urea Hydrolysis Paradoxically Boosts Acidification and Reveals a New Regulatory Mechanism of Glycolysis.
    Arioli S; Della Scala G; Martinović A; Scaglioni L; Mazzini S; Volonté F; Pedersen MB; Mora D
    Microbiol Spectr; 2022 Jun; 10(3):e0276021. PubMed ID: 35467410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. bulgaricus homolactic fermentation.
    Arioli S; Della Scala G; Remagni MC; Stuknyte M; Colombo S; Guglielmetti S; De Noni I; Ragg E; Mora D
    Int J Food Microbiol; 2017 Apr; 247():55-64. PubMed ID: 26826763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a milk-based medium for the selection of urease-defective mutants of Streptococcus thermophilus.
    Scala GD; Volontè F; Ricci G; Pedersen MB; Arioli S; Mora D
    Int J Food Microbiol; 2019 Nov; 308():108304. PubMed ID: 31425789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short communication: Lactose utilization of Streptococcus thermophilus and correlations with β-galactosidase and urease.
    Yu P; Li N; Geng M; Liu Z; Liu X; Zhang H; Zhao J; Zhang H; Chen W
    J Dairy Sci; 2020 Jan; 103(1):166-171. PubMed ID: 31704010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a M9-based urea medium (M9U) for sensitive and real-time monitoring of ureolytic activity of bacteria and cell-free urease.
    Sigurdarson JJ; Svane S; Karring H
    Microbiologyopen; 2020 Mar; 9(3):e976. PubMed ID: 31943918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-scale reconstruction of the metabolic network in Streptococcus thermophilus S-3 and assess urea metabolism.
    Hou C; Song X; Xiong Z; Wang G; Xia Y; Ai L
    J Sci Food Agric; 2024 Feb; 104(3):1458-1469. PubMed ID: 37814322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the metabolism of urea on the acidifying activity of Streptococcus thermophilus.
    Pernoud S; Fremaux C; Sepulchre A; Corrieu G; Monnet C
    J Dairy Sci; 2004 Mar; 87(3):550-5. PubMed ID: 15202638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urease biogenesis in Streptococcus thermophilus.
    Mora D; Monnet C; Parini C; Guglielmetti S; Mariani A; Pintus P; Molinari F; Daffonchio D; Manachini PL
    Res Microbiol; 2005 Nov; 156(9):897-903. PubMed ID: 16024230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of urea by Ureaplasma urealyticum generates a transmembrane potential with resultant ATP synthesis.
    Smith DG; Russell WC; Ingledew WJ; Thirkell D
    J Bacteriol; 1993 Jun; 175(11):3253-8. PubMed ID: 8501029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A determination and comparison of urease activity in feces and fresh manure from pig and cattle in relation to ammonia production and pH changes.
    Dai X; Karring H
    PLoS One; 2014; 9(11):e110402. PubMed ID: 25397404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urease production by Streptococcus thermophilus.
    Zotta T; Ricciardi A; Rossano R; Parente E
    Food Microbiol; 2008 Feb; 25(1):113-9. PubMed ID: 17993384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relevance of carbon dioxide metabolism in Streptococcus thermophilus.
    Arioli S; Roncada P; Salzano AM; Deriu F; Corona S; Guglielmetti S; Bonizzi L; Scaloni A; Mora D
    Microbiology (Reading); 2009 Jun; 155(Pt 6):1953-1965. PubMed ID: 19372152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection and properties of Streptococcus thermophilus mutants deficient in urease.
    Monnet C; Pernoud S; Sepulchre A; Fremaux C; Corrieu G
    J Dairy Sci; 2004 Jun; 87(6):1634-40. PubMed ID: 15453477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helicobacter pylori requires an acidic environment to survive in the presence of urea.
    Clyne M; Labigne A; Drumm B
    Infect Immun; 1995 May; 63(5):1669-73. PubMed ID: 7729871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Could alkali production be considered an approach for caries control?
    Gordan VV; Garvan CW; Ottenga ME; Schulte R; Harris PA; McEdward D; Magnusson I
    Caries Res; 2010; 44(6):547-54. PubMed ID: 21071940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies of the urease-catalyzed hydrolysis of urea in a buffer-free system.
    Qin Y; Cabral JM
    Appl Biochem Biotechnol; 1994 Dec; 49(3):217-40. PubMed ID: 7847898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel mechanism of urease regulation in Yersinia enterocolitica.
    de Koning-Ward TF; Robins-Browne RM
    FEMS Microbiol Lett; 1997 Feb; 147(2):221-6. PubMed ID: 9119197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of ammonia and mucosal lesion formation following hydrolysis of urea by urease in the rat stomach.
    Murakami M; Yoo JK; Teramura S; Yamamoto K; Saita H; Matuo K; Asada T; Kita T
    J Clin Gastroenterol; 1990; 12 Suppl 1():S104-9. PubMed ID: 2212535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of inhibition by fluoride of urease activities of cell suspensions and biofilms of Staphylococcus epidermidis, Streptococcus salivarius, Actinomyces naeslundii and of dental plaque.
    Barboza-Silva E; Castro AC; Marquis RE
    Oral Microbiol Immunol; 2005 Dec; 20(6):323-32. PubMed ID: 16238590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.