These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21152338)

  • 1. Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons.
    Vierling-Claassen D; Cardin JA; Moore CI; Jones SR
    Front Hum Neurosci; 2010; 4():198. PubMed ID: 21152338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent and intermittent ensemble oscillations emerge from networks of irregular spiking neurons.
    Hoseini MS; Wessel R
    J Neurophysiol; 2016 Jan; 115(1):457-69. PubMed ID: 26561602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics.
    Hayut I; Fanselow EE; Connors BW; Golomb D
    PLoS Comput Biol; 2011 Oct; 7(10):e1002248. PubMed ID: 22046121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations.
    Proddutur A; Yu J; Elgammal FS; Santhakumar V
    Chaos; 2013 Dec; 23(4):046109. PubMed ID: 24387588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses.
    Bacci A; Rudolph U; Huguenard JR; Prince DA
    J Neurosci; 2003 Oct; 23(29):9664-74. PubMed ID: 14573546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.
    Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH
    J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of broadband conductance input in rat somatosensory cortical inhibitory interneurons: an inhibition-controlled switch between intrinsic and input-driven spiking in fast-spiking cells.
    Tateno T; Robinson HP
    J Neurophysiol; 2009 Feb; 101(2):1056-72. PubMed ID: 19091918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent Gamma Spiking in SI Nonsensory Fast Spiking Cells Predicts Perceptual Success.
    Shin H; Moore CI
    Neuron; 2019 Sep; 103(6):1150-1163.e5. PubMed ID: 31327663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driving fast-spiking cells induces gamma rhythm and controls sensory responses.
    Cardin JA; Carlén M; Meletis K; Knoblich U; Zhang F; Deisseroth K; Tsai LH; Moore CI
    Nature; 2009 Jun; 459(7247):663-7. PubMed ID: 19396156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic inhibition of pyramidal cells evoked by different interneuronal subtypes in layer v of rat visual cortex.
    Xiang Z; Huguenard JR; Prince DA
    J Neurophysiol; 2002 Aug; 88(2):740-50. PubMed ID: 12163526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two dynamically distinct inhibitory networks in layer 4 of the neocortex.
    Beierlein M; Gibson JR; Connors BW
    J Neurophysiol; 2003 Nov; 90(5):2987-3000. PubMed ID: 12815025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What do we gain from gamma? Local dynamic gain modulation drives enhanced efficacy and efficiency of signal transmission.
    Knoblich U; Siegle JH; Pritchett DL; Moore CI
    Front Hum Neurosci; 2010; 4():185. PubMed ID: 21151350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics.
    Tateno T; Robinson HP
    J Neurophysiol; 2006 Apr; 95(4):2650-63. PubMed ID: 16551842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gap Junctions Link Regular-Spiking and Fast-Spiking Interneurons in Layer 5 Somatosensory Cortex.
    Hatch RJ; Mendis GDC; Kaila K; Reid CA; Petrou S
    Front Cell Neurosci; 2017; 11():204. PubMed ID: 28769764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural alterations in fast-spiking GABAergic interneurons in a model of posttraumatic neocortical epileptogenesis.
    Gu F; Parada I; Shen F; Li J; Bacci A; Graber K; Taghavi RM; Scalise K; Schwartzkroin P; Wenzel J; Prince DA
    Neurobiol Dis; 2017 Dec; 108():100-114. PubMed ID: 28823934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recurrent synaptic input and the timing of gamma-frequency-modulated firing of pyramidal cells during neocortical "UP" states.
    Morita K; Kalra R; Aihara K; Robinson HP
    J Neurosci; 2008 Feb; 28(8):1871-81. PubMed ID: 18287504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4.
    Gibson JR; Beierlein M; Connors BW
    J Neurophysiol; 2005 Jan; 93(1):467-80. PubMed ID: 15317837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids.
    Bacci A; Huguenard JR; Prince DA
    Nature; 2004 Sep; 431(7006):312-6. PubMed ID: 15372034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex.
    Fanselow EE; Richardson KA; Connors BW
    J Neurophysiol; 2008 Nov; 100(5):2640-52. PubMed ID: 18799598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts.
    Traub RD; Contreras D; Cunningham MO; Murray H; LeBeau FE; Roopun A; Bibbig A; Wilent WB; Higley MJ; Whittington MA
    J Neurophysiol; 2005 Apr; 93(4):2194-232. PubMed ID: 15525801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.