These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21152348)

  • 21. Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum.
    Valtcheva S; Paillé V; Dembitskaya Y; Perez S; Gangarossa G; Fino E; Venance L
    Neuropharmacology; 2017 Jul; 121():261-277. PubMed ID: 28408325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. STDP in Recurrent Neuronal Networks.
    Gilson M; Burkitt A; van Hemmen LJ
    Front Comput Neurosci; 2010; 4():. PubMed ID: 20890448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fading memory and time series prediction in recurrent networks with different forms of plasticity.
    Lazar A; Pipa G; Triesch J
    Neural Netw; 2007 Apr; 20(3):312-22. PubMed ID: 17556114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
    Olde Scheper TV; Meredith RM; Mansvelder HD; van Pelt J; van Ooyen A
    Front Comput Neurosci; 2017; 11():119. PubMed ID: 29375358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network.
    Kim SY; Lim W
    Neural Netw; 2018 Oct; 106():50-66. PubMed ID: 30025272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs.
    Du N; Zhao X; Chen Z; Choubey B; Di Ventra M; Skorupa I; Bürger D; Schmidt H
    Front Neurosci; 2021; 15():660894. PubMed ID: 34335153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Hypothetical Model Concerning How Spike-Timing-Dependent Plasticity Contributes to Neural Circuit Formation and Initiation of the Critical Period in Barrel Cortex.
    Kimura F; Itami C
    J Neurosci; 2019 May; 39(20):3784-3791. PubMed ID: 30877173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potentiation decay of synapses and length distributions of synfire chains self-organized in recurrent neural networks.
    Miller A; Jin DZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062716. PubMed ID: 24483495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Network-timing-dependent plasticity.
    Delattre V; Keller D; Perich M; Markram H; Muller EB
    Front Cell Neurosci; 2015; 9():220. PubMed ID: 26106298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intrinsic stability of temporally shifted spike-timing dependent plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2010 Nov; 6(11):e1000961. PubMed ID: 21079671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spike timing-dependent plasticity induces non-trivial topology in the brain.
    Borges RR; Borges FS; Lameu EL; Batista AM; Iarosz KC; Caldas IL; Antonopoulos CG; Baptista MS
    Neural Netw; 2017 Apr; 88():58-64. PubMed ID: 28189840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.
    Srinivasa N; Cho Y
    Front Comput Neurosci; 2014; 8():159. PubMed ID: 25566045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. STDP in Oscillatory Recurrent Networks: Theoretical Conditions for Desynchronization and Applications to Deep Brain Stimulation.
    Pfister JP; Tass PA
    Front Comput Neurosci; 2010; 4():. PubMed ID: 20802859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dopamine Receptors Differentially Control Binge Alcohol Drinking-Mediated Synaptic Plasticity of the Core Nucleus Accumbens Direct and Indirect Pathways.
    Ji X; Saha S; Kolpakova J; Guildford M; Tapper AR; Martin GE
    J Neurosci; 2017 May; 37(22):5463-5474. PubMed ID: 28473645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anti-hebbian spike-timing-dependent plasticity and adaptive sensory processing.
    Roberts PD; Leen TK
    Front Comput Neurosci; 2010; 4():156. PubMed ID: 21228915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal avalanche dynamics regulated by spike-timing-dependent plasticity under different topologies and heterogeneities.
    Yang J; Feng P; Wu Y
    Cogn Neurodyn; 2024 Jun; 18(3):1307-1321. PubMed ID: 38826660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-organization of synchronous activity propagation in neuronal networks driven by local excitation.
    Bayati M; Valizadeh A; Abbassian A; Cheng S
    Front Comput Neurosci; 2015; 9():69. PubMed ID: 26089794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A history of spike-timing-dependent plasticity.
    Markram H; Gerstner W; Sjöström PJ
    Front Synaptic Neurosci; 2011; 3():4. PubMed ID: 22007168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.