These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21152365)

  • 1. In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor.
    Schulz V; Guenther M; Gerlach G; Magda JJ; Tathireddy P; Rieth L; Solzbacher F
    Smart Struct Mater Nondestruct Eval Health Monit Diagn; 2009 Apr; 7287():. PubMed ID: 21152365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).
    Orthner MP; Lin G; Avula M; Buetefisch S; Magda J; Rieth LW; Solzbacher F
    Sens Actuators B Chem; 2010 Mar; 145(2):807-816. PubMed ID: 23750073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Piezoresistive Hydrogel-Based Sensors for the Detection of Ammonia.
    Erfkamp J; Guenther M; Gerlach G
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development, Fabrication, and Characterization of Hydrogel Based Piezoresistive Pressure Sensors with Perforated Diaphragms.
    Orthner MP; Buetefisch S; Magda J; Rieth LW; Solzbacher F
    Sens Actuators A Phys; 2010 Jun; 161(1-2):29-38. PubMed ID: 20657810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free swelling and confined smart hydrogels for applications in chemomechanical sensors for physiological monitoring.
    Lin G; Chang S; Kuo CH; Magda J; Solzbacher F
    Sens Actuators B Chem; 2009 Feb; 136(1):186. PubMed ID: 20130753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel-based piezoresistive pH sensors: investigations using FT-IR attenuated total reflection spectroscopic imaging.
    Sorber J; Steiner G; Schulz V; Guenther M; Gerlach G; Salzer R; Arndt KF
    Anal Chem; 2008 Apr; 80(8):2957-62. PubMed ID: 18303919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review on Hydrogel-based pH Sensors and Microsensors.
    Richter A; Paschew G; Klatt S; Lienig J; Arndt KF; Adler HP
    Sensors (Basel); 2008 Jan; 8(1):561-581. PubMed ID: 27879722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of temperature changes on the performance of ionic strength biosensors based on hydrogels and pressure sensors.
    Avula M; Busche N; Cho SH; Tathireddy P; Rieth LW; Magda JJ; Solzbacher F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1855-8. PubMed ID: 22254691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of pH and electrically controlled swelling of hydrogel-based micro-sensors/actuators.
    Yew YK; Ng TY; Li H; Lam KY
    Biomed Microdevices; 2007 Aug; 9(4):487-99. PubMed ID: 17520372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphysics modeling of responsive characteristics of ionic-strength-sensitive hydrogel.
    Li H; Lai F
    Biomed Microdevices; 2010 Jun; 12(3):419-34. PubMed ID: 20195766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-Functionalized Piezoresistive Hydrogel Biosensors for the Detection of Urea.
    Erfkamp J; Guenther M; Gerlach G
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcantilever sensing arrays from biodegradable, pH-responsive hydrogels.
    VanBlarcom DS; Peppas NA
    Biomed Microdevices; 2011 Oct; 13(5):829-36. PubMed ID: 21603961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multistimuli-Responsive PNIPAM-Based Double Cross-Linked Conductive Hydrogel with Self-Recovery Ability for Ionic Skin and Smart Sensor.
    Jiang Z; Shi X; Qiao F; Sun J; Hu Q
    Biomacromolecules; 2022 Dec; 23(12):5239-5252. PubMed ID: 36354756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart Macroporous IPN Hydrogels Responsive to pH, Temperature, and Ionic Strength: Synthesis, Characterization, and Evaluation of Controlled Release of Drugs.
    Dragan ES; Cocarta AI
    ACS Appl Mater Interfaces; 2016 May; 8(19):12018-30. PubMed ID: 27115698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of the effects of pH and polymer concentration on the swelling pressure and elastic modulus of a pH-responsive hydrogel.
    Horkay F; Han MH; Han IS; Bang IS; Magda JJ
    Polymer (Guildf); 2006 Oct; 47(21):7335-7338. PubMed ID: 17917687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of swelling of responsive gels with nanometer resolution. Fiber-optic based platform for hydrogels as signal transducers.
    Tierney S; Hjelme DR; Stokke BT
    Anal Chem; 2008 Jul; 80(13):5086-93. PubMed ID: 18491924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Impedimetric Measurement of Acidosis with a pH-Responsive Hydrogel Sensor.
    Bhat A; Amanor-Boadu JM; Guiseppi-Elie A
    ACS Sens; 2020 Feb; 5(2):500-509. PubMed ID: 31948224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation.
    Shang J; Theato P
    Soft Matter; 2018 Nov; 14(41):8401-8407. PubMed ID: 30311935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model.
    Li H; Lai F; Luo R
    Langmuir; 2009 Nov; 25(22):13142-50. PubMed ID: 19678621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modeling study of the effect of environmental ionic valence on the mechanical characteristics of pH-electrosensitive hydrogel.
    Luo R; Li H
    Acta Biomater; 2009 Oct; 5(8):2920-8. PubMed ID: 19427422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.