These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
469 related articles for article (PubMed ID: 21152570)
1. CO bond cleavage on supported nano-gold during low temperature oxidation. Carley AF; Morgan DJ; Song N; Roberts MW; Taylor SH; Bartley JK; Willock DJ; Howard KL; Hutchings GJ Phys Chem Chem Phys; 2011 Feb; 13(7):2528-38. PubMed ID: 21152570 [TBL] [Abstract][Full Text] [Related]
2. Theoretical study of atomic oxygen on gold surface by Hückel theory and DFT calculations. Sun K; Kohyama M; Tanaka S; Takeda S J Phys Chem A; 2012 Sep; 116(38):9568-73. PubMed ID: 22946712 [TBL] [Abstract][Full Text] [Related]
3. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen. Baker TA; Liu X; Friend CM Phys Chem Chem Phys; 2011 Jan; 13(1):34-46. PubMed ID: 21103516 [TBL] [Abstract][Full Text] [Related]
4. Model studies on CO oxidation catalyst systems: titania and gold nanoparticles. Christmann K; Schwede S; Schubert S; Kudernatsch W Chemphyschem; 2010 May; 11(7):1344-63. PubMed ID: 20183844 [TBL] [Abstract][Full Text] [Related]
5. Low-temperature CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy. Knudsen J; Merte LR; Peng G; Vang RT; Resta A; Laegsgaard E; Andersen JN; Mavrikakis M; Besenbacher F ACS Nano; 2010 Aug; 4(8):4380-7. PubMed ID: 20731424 [TBL] [Abstract][Full Text] [Related]
6. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation. Wang AQ; Chang CM; Mou CY J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427 [TBL] [Abstract][Full Text] [Related]
7. Interaction of carbon monoxide with Au(111) modified by ion bombardment: a surface spectroscopy study under elevated pressure. Pászti Z; Hakkel O; Keszthelyi T; Berkó A; Balázs N; Bakó I; Guczi L Langmuir; 2010 Nov; 26(21):16312-24. PubMed ID: 20973580 [TBL] [Abstract][Full Text] [Related]
8. Catalysis of oxidation of carbon monoxide on supported gold nanoparticle. Tseng CH; Yang TC; Wu HE; Chiang HC J Hazard Mater; 2009 Jul; 166(2-3):686-94. PubMed ID: 19144461 [TBL] [Abstract][Full Text] [Related]
9. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. Burch R Phys Chem Chem Phys; 2006 Dec; 8(47):5483-500. PubMed ID: 17136264 [TBL] [Abstract][Full Text] [Related]
10. Effect of nanosized gold particle addition to supported metal oxide catalyst in methanol oxidation. Kim KJ; You YJ; Chung MC; Kang CS; Chung KH; Jeong WJ; Jeong SW; Ahn HG J Nanosci Nanotechnol; 2006 Nov; 6(11):3589-93. PubMed ID: 17252817 [TBL] [Abstract][Full Text] [Related]
11. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. Chrétien S; Metiu H J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790 [TBL] [Abstract][Full Text] [Related]
12. In situ IR, pulse reaction and TPD-ITD study of catalytic performance of room-temperature carbon monoxide oxidation on supported gold catalysts. Hao ZP; Zhang SC; Liu ZM; Zhang HP J Environ Sci (China); 2002 Oct; 14(4):489-94. PubMed ID: 12491722 [TBL] [Abstract][Full Text] [Related]
13. Spin trapping of Au-H intermediate in the alcohol oxidation by supported and unsupported gold catalysts. Conte M; Miyamura H; Kobayashi S; Chechik V J Am Chem Soc; 2009 May; 131(20):7189-96. PubMed ID: 19405535 [TBL] [Abstract][Full Text] [Related]
14. Genesis of a highly active cerium oxide-supported gold catalyst for CO oxidation. Aguilar-Guerrero V; Gates BC Chem Commun (Camb); 2007 Aug; (30):3210-2. PubMed ID: 17653391 [TBL] [Abstract][Full Text] [Related]
15. Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation. Kang Y; Ye X; Chen J; Qi L; Diaz RE; Doan-Nguyen V; Xing G; Kagan CR; Li J; Gorte RJ; Stach EA; Murray CB J Am Chem Soc; 2013 Jan; 135(4):1499-505. PubMed ID: 23294105 [TBL] [Abstract][Full Text] [Related]
16. Water-enhanced low-temperature CO oxidation and isotope effects on atomic oxygen-covered Au(111). Ojifinni RA; Froemming NS; Gong J; Pan M; Kim TS; White JM; Henkelman G; Mullins CB J Am Chem Soc; 2008 May; 130(21):6801-12. PubMed ID: 18444649 [TBL] [Abstract][Full Text] [Related]
17. Half-encapsulated Au nanoparticles by nano iron oxide: promoted performance of the aerobic oxidation of 1-phenylethanol. Zhao J; Liu H; Ye S; Cui Y; Xue N; Peng L; Guo X; Ding W Nanoscale; 2013 Oct; 5(20):9546-52. PubMed ID: 23978992 [TBL] [Abstract][Full Text] [Related]
18. Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Ma C; Wang D; Xue W; Dou B; Wang H; Hao Z Environ Sci Technol; 2011 Apr; 45(8):3628-34. PubMed ID: 21375237 [TBL] [Abstract][Full Text] [Related]
19. Role of Au-C interactions on the catalytic activity of au nanoparticles supported on TiC(001) toward molecular oxygen dissociation. Rodríguez JA; Feria L; Jirsak T; Takahashi Y; Nakamura K; Illas F J Am Chem Soc; 2010 Mar; 132(9):3177-86. PubMed ID: 20143811 [TBL] [Abstract][Full Text] [Related]
20. CO oxidation at the perimeters of an FeO/Pt(111) interface and how water promotes the activity: a first-principles study. Gu XK; Ouyang R; Sun D; Su HY; Li WX ChemSusChem; 2012 May; 5(5):871-8. PubMed ID: 22162485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]