These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21152606)

  • 1. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform.
    Hoganson DM; Pryor HI; Bassett EK; Spool ID; Vacanti JP
    Lab Chip; 2011 Feb; 11(4):700-7. PubMed ID: 21152606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branched vascular network architecture: a new approach to lung assist device technology.
    Hoganson DM; Anderson JL; Weinberg EF; Swart E; Orrick BK; Borenstein JT; Vacanti JP
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):990-5. PubMed ID: 20591445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic respiratory assist device with high gas permeance for artificial lung applications.
    Kniazeva T; Hsiao JC; Charest JL; Borenstein JT
    Biomed Microdevices; 2011 Apr; 13(2):315-23. PubMed ID: 21113664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of vascular network design on gas transfer in lung assist device technology.
    Bassett EK; Hoganson DM; Lo JH; Penson EJ; Vacanti JP
    ASAIO J; 2011; 57(6):533-8. PubMed ID: 22036722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental safety and efficacy evaluation of an extracorporeal pumpless artificial lung in providing respiratory support through the axillary vessels.
    Iglesias M; Jungebluth P; Sibila O; Aldabo I; Matute MP; Petit C; Torres A; Macchiarini P
    J Thorac Cardiovasc Surg; 2007 Feb; 133(2):339-45. PubMed ID: 17258560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intravascular gas transfer. Membrane surface area and sweeping gas flows are of prime importance.
    von Segesser LK; Tkebuchava T; Marty B; Leskosek B; Tevaearai H
    ASAIO J; 1997; 43(5):M457-9. PubMed ID: 9360084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lung assist device: development of microfluidic oxygenators for preterm infants with respiratory failure.
    Wu WI; Rochow N; Chan E; Fusch G; Manan A; Nagpal D; Selvaganapathy PR; Fusch C
    Lab Chip; 2013 Jul; 13(13):2641-50. PubMed ID: 23702615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an intravenous membrane oxygenator: a new concept in mechanical support for the failing lung.
    Hattler BG; Reeder GD; Sawzik PJ; Walters FR; Pham SM; Kormos RL; Keenan RJ; Griffith BP; Armitage JM; Hardesty RL
    J Heart Lung Transplant; 1994; 13(6):1003-8. PubMed ID: 7865505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ambulatory pulmonary and right heart assist device (OxyRVAD) in an ovine survival model.
    Wang D; Zhou X; Lick SD; Liu X; Qian K; Zwischenberger JB
    J Heart Lung Transplant; 2007 Oct; 26(10):974-9. PubMed ID: 17919615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ambulatory oxygenator right ventricular assist device for total right heart and respiratory support.
    Wang D; Lick SD; Zhou X; Liu X; Benkowski RJ; Zwischenberger JB
    Ann Thorac Surg; 2007 Nov; 84(5):1699-703. PubMed ID: 17954089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow vectorial analysis in an artificial implantable lung.
    Funakubo A; Taga I; McGillicuddy JW; Fukui Y; Hirschl RB; Bartlett RH
    ASAIO J; 2003; 49(4):383-7. PubMed ID: 12918578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a MedArray silicone hollow fiber oxygenator.
    LaFayette NG; Schewe RE; Montoya JP; Cook KE
    ASAIO J; 2009; 55(4):382-7. PubMed ID: 19381081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design and in vitro characterization of an integrated maglev pump-oxygenator.
    Zhang J; Taskin ME; Koert A; Zhang T; Gellman B; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2009 Oct; 33(10):805-17. PubMed ID: 19681842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: computational and experimental studies.
    Zierenberg JR; Fujioka H; Cook KE; Grotberg JB
    J Biomech Eng; 2008 Jun; 130(3):031019. PubMed ID: 18532868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of a novel artificial heart-lung system for long-term cardiopulmonary support--experimental evaluation in goats with total cardiopulmonary bypass].
    Eya K
    Hokkaido Igaku Zasshi; 1999 Sep; 74(5):395-404. PubMed ID: 10495854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of hemodynamics on the performances of intravascular gas exchangers.
    Mihaljevic T; von Segesser LK; Tönz M; Leskosek B; Turina MI
    Ann Thorac Surg; 1995 Dec; 60(6):1665-70. PubMed ID: 8787460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Description of a flow optimized oxygenator with integrated pulsatile pump.
    Borchardt R; Schlanstein P; Arens J; Graefe R; Schreiber F; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2010 Nov; 34(11):904-10. PubMed ID: 21092033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung tissue engineering.
    Hoganson DM; Bassett EK; Vacanti JP
    Front Biosci (Landmark Ed); 2014 Jun; 19(8):1227-39. PubMed ID: 24896347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new intravascular membrane oxygenator to augment blood gas transfer in patients with acute respiratory failure.
    Zwischenberger JB; Cox CS
    Tex Med; 1991 Dec; 87(12):60-3. PubMed ID: 1801294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices.
    Lo JH; Bassett EK; Penson EJ; Hoganson DM; Vacanti JP
    Tissue Eng Part A; 2015 Aug; 21(15-16):2147-55. PubMed ID: 26020102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.