BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21152947)

  • 1. Involvement of bone-marrow-derived cells in kidney fibrosis.
    Wada T; Sakai N; Sakai Y; Matsushima K; Kaneko S; Furuichi K
    Clin Exp Nephrol; 2011 Feb; 15(1):8-13. PubMed ID: 21152947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone marrow-derived fibrocytes contribute to liver fibrosis.
    Xu J; Kisseleva T
    Exp Biol Med (Maywood); 2015 Jun; 240(6):691-700. PubMed ID: 25966982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The renin-angiotensin system contributes to renal fibrosis through regulation of fibrocytes.
    Sakai N; Wada T; Matsushima K; Bucala R; Iwai M; Horiuchi M; Kaneko S
    J Hypertens; 2008 Apr; 26(4):780-90. PubMed ID: 18327089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CCR2 regulates the uptake of bone marrow-derived fibroblasts in renal fibrosis.
    Xia Y; Entman ML; Wang Y
    PLoS One; 2013; 8(10):e77493. PubMed ID: 24130892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STAT3 Inhibition Partly Abolishes IL-33-Induced Bone Marrow-Derived Monocyte Phenotypic Transition into Fibroblast Precursor and Alleviates Experimental Renal Interstitial Fibrosis.
    Zhu F; Bai X; Hong Q; Cui S; Wang X; Xiao F; Li J; Zhang L; Dong Z; Wang Y; Cai G; Chen X
    J Immunol; 2019 Nov; 203(10):2644-2654. PubMed ID: 31591147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The extrapulmonary origin of fibroblasts: stem/progenitor cells and beyond.
    Lama VN; Phan SH
    Proc Am Thorac Soc; 2006 Jun; 3(4):373-6. PubMed ID: 16738203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and molecular mechanisms of fibrosis.
    Wynn TA
    J Pathol; 2008 Jan; 214(2):199-210. PubMed ID: 18161745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of angiotensin II type 1 receptor in bone marrow-derived cells is detrimental in the evolution of renal fibrosis.
    Nishida M; Fujinaka H; Matsusaka T; Price J; Kon V; Fogo AB; Davidson JM; Linton MF; Fazio S; Homma T; Yoshida H; Ichikawa I
    J Clin Invest; 2002 Dec; 110(12):1859-68. PubMed ID: 12488436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The IL-4 receptor α has a critical role in bone marrow-derived fibroblast activation and renal fibrosis.
    Liang H; Zhang Z; Yan J; Wang Y; Hu Z; Mitch WE; Wang Y
    Kidney Int; 2017 Dec; 92(6):1433-1443. PubMed ID: 28739140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. JAK3/STAT6 Stimulates Bone Marrow-Derived Fibroblast Activation in Renal Fibrosis.
    Yan J; Zhang Z; Yang J; Mitch WE; Wang Y
    J Am Soc Nephrol; 2015 Dec; 26(12):3060-71. PubMed ID: 26032813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protection of bone marrow-derived CD45+/CD34-/lin- stromal cells with immunosuppressant activity against ischemia/reperfusion injury in rats.
    Chung YC; Ma MC; Huang BY; Chiang HS; Chou SH
    Chin J Physiol; 2011 Jun; 54(3):169-82. PubMed ID: 21789899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrocytes in Chronic Periaortitis: A Novel Mechanism Linking Inflammation and Fibrosis.
    Nicastro M; Vescovini R; Maritati F; Palmisano A; Urban ML; Incerti M; Fenaroli P; Peyronel F; Benigno GD; Mangieri D; Volpi R; Becchi G; Romagnani P; Corradi D; Vaglio A
    Arthritis Rheumatol; 2019 Nov; 71(11):1913-1922. PubMed ID: 31233292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses.
    Bellini A; Mattoli S
    Lab Invest; 2007 Sep; 87(9):858-70. PubMed ID: 17607298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The renal cortical fibroblast in renal tubulointerstitial fibrosis.
    Qi W; Chen X; Poronnik P; Pollock CA
    Int J Biochem Cell Biol; 2006 Jan; 38(1):1-5. PubMed ID: 16230044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney.
    Srivastava SP; Hedayat AF; Kanasaki K; Goodwin JE
    Front Pharmacol; 2019; 10():904. PubMed ID: 31474862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury.
    Lassance L; Marino GK; Medeiros CS; Thangavadivel S; Wilson SE
    Exp Eye Res; 2018 May; 170():177-187. PubMed ID: 29481786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular and molecular mechanisms of intestinal fibrosis.
    Speca S; Giusti I; Rieder F; Latella G
    World J Gastroenterol; 2012 Jul; 18(28):3635-61. PubMed ID: 22851857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoinositide 3-kinase γ deficiency attenuates kidney injury and fibrosis in angiotensin II-induced hypertension.
    An C; Wen J; Hu Z; Mitch WE; Wang Y
    Nephrol Dial Transplant; 2020 Sep; 35(9):1491-1500. PubMed ID: 32500132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model.
    Reich B; Schmidbauer K; Rodriguez Gomez M; Johannes Hermann F; Göbel N; Brühl H; Ketelsen I; Talke Y; Mack M
    Kidney Int; 2013 Jul; 84(1):78-89. PubMed ID: 23486523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MIP-1alpha and TGF-beta production in CD34+ progenitor-stromal cell coculture systems: effects of progenitor isolation method and cell-cell contact.
    Liesveld JL; Harbol AW; Belanger T; Rosell KE; Abboud CN
    Blood Cells Mol Dis; 2000 Aug; 26(4):261-75. PubMed ID: 11042027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.