These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21152978)

  • 41. Enhanced catalytic efficiency of endo-β-agarase I by fusion of carbohydrate-binding modules for agar prehydrolysis.
    Alkotaini B; Han NS; Kim BS
    Enzyme Microb Technol; 2016 Nov; 93-94():142-149. PubMed ID: 27702474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic glycosyl hydrolase screening for biomass-to-biofuel conversion.
    Bharadwaj R; Chen Z; Datta S; Holmes BM; Sapra R; Simmons BA; Adams PD; Singh AK
    Anal Chem; 2010 Nov; 82(22):9513-20. PubMed ID: 20964411
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular, biochemical, and proteomic analyses of transplastomic tobacco plants expressing an endoglucanase support chloroplast-based molecular farming for industrial scale production of enzymes.
    Fumagalli M; Gerace D; Faè M; Iadarola P; Leelavathi S; Reddy VS; Cella R
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9479-9491. PubMed ID: 31701198
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbohydrate-binding modules influence substrate specificity of an endoglucanase from Clostridium thermocellum.
    Ichikawa S; Yoshida M; Karita S; Kondo M; Goto M
    Biosci Biotechnol Biochem; 2016; 80(1):188-92. PubMed ID: 26223555
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced activity of Thermotoga maritima cellulase 12A by mutating a unique surface loop.
    Cheng YS; Ko TP; Huang JW; Wu TH; Lin CY; Luo W; Li Q; Ma Y; Huang CH; Wang AH; Liu JR; Guo RT
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):661-9. PubMed ID: 22170108
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-chromatographic purification of thermostable endoglucanase from Thermotoga maritima by fusion with a hydrophobic elastin-like polypeptide.
    Wang S; Lin R; Ren Y; Zhang T; Lu H; Wang L; Fan D
    Protein Expr Purif; 2020 Sep; 173():105634. PubMed ID: 32325232
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production and characterization of in planta transiently produced polygalacturanase from Aspergillus niger and its fusions with hydrophobin or ELP tags.
    Pereira EO; Kolotilin I; Conley AJ; Menassa R
    BMC Biotechnol; 2014 Jun; 14():59. PubMed ID: 24970673
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Global and grain-specific accumulation of glycoside hydrolase family 10 xylanases in transgenic maize (Zea mays).
    Gray BN; Bougri O; Carlson AR; Meissner J; Pan S; Parker MH; Zhang D; Samoylov V; Ekborg NA; Michael Raab R
    Plant Biotechnol J; 2011 Dec; 9(9):1100-8. PubMed ID: 21689368
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo-xylanases.
    Borkhardt B; Harholt J; Ulvskov P; Ahring BK; Jørgensen B; Brinch-Pedersen H
    Plant Biotechnol J; 2010 Apr; 8(3):363-74. PubMed ID: 20384855
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate.
    Moraïs S; Barak Y; Caspi J; Hadar Y; Lamed R; Shoham Y; Wilson DB; Bayer EA
    mBio; 2010 Dec; 1(5):. PubMed ID: 21157512
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In planta production and characterization of a hyperthermostable GH10 xylanase in transgenic sugarcane.
    Kim JY; Nong G; Rice JD; Gallo M; Preston JF; Altpeter F
    Plant Mol Biol; 2017 Mar; 93(4-5):465-478. PubMed ID: 28005227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [High-level expression of an extreme-thermostable xylanase B from Thermotoga maritima MSB8 in Escherichia coli and Pichia pastoris].
    Yang MH; Li Y; Guan GH; Jiang ZQ
    Wei Sheng Wu Xue Bao; 2005 Apr; 45(2):236-40. PubMed ID: 15989268
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering hydroxyproline-O-glycosylated biopolymers to reconstruct the plant cell wall for improved biomass processability.
    Fang H; Wright T; Jinn JR; Guo W; Zhang N; Wang X; Wang YJ; Xu J
    Biotechnol Bioeng; 2020 Apr; 117(4):945-958. PubMed ID: 31930479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A modified Escherichia coli chaperonin (groEL) polypeptide synthesized in tobacco and targeted to the chloroplasts.
    Wu HB; Feist GL; Hemmingsen SM
    Plant Mol Biol; 1993 Sep; 22(6):1087-100. PubMed ID: 8104528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum.
    Yuan SF; Wu TH; Lee HL; Hsieh HY; Lin WL; Yang B; Chang CK; Li Q; Gao J; Huang CH; Ho MC; Guo RT; Liang PH
    J Biol Chem; 2015 Feb; 290(9):5739-48. PubMed ID: 25575592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Agrobacterium tumefaciens mediated transient expression of plant cell wall-degrading enzymes in detached sunflower leaves.
    Jung SK; Lindenmuth BE; McDonald KA; Hwang H; Bui MQ; Falk BW; Uratsu SL; Phu ML; Dandekar AM
    Biotechnol Prog; 2014; 30(4):905-15. PubMed ID: 25180328
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cloning, sequencing, and expression of a Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) with novel carbohydrate-binding modules, and properties of Cel5A.
    Yoda K; Toyoda A; Mukoyama Y; Nakamura Y; Minato H
    Appl Environ Microbiol; 2005 Oct; 71(10):5787-93. PubMed ID: 16204489
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective Activation of Chloroplast psbD Light-Responsive Promoter and psaA/B Promoter in Transplastomic Tobacco Plants Overexpressing Arabidopsis Sigma Factor AtSIG5.
    Nozoe M; Tsunoyama Y; Ishizaki Y; Nakahira Y; Shiina T
    Protein Pept Lett; 2020; 27(2):168-175. PubMed ID: 31612816
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extremely thermoactive archaeal endoglucanase from a shallow marine hydrothermal vent from Vulcano Island.
    Suleiman M; Schröder C; Klippel B; Schäfers C; Krüger A; Antranikian G
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1267-1274. PubMed ID: 30547216
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies.
    Prins A; van Heerden PD; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2008; 59(7):1935-50. PubMed ID: 18503045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.