BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 21153060)

  • 1. Huntington's disease and Group I metabotropic glutamate receptors.
    Ribeiro FM; Pires RG; Ferguson SS
    Mol Neurobiol; 2011 Feb; 43(1):1-11. PubMed ID: 21153060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.
    Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I
    Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease.
    Doria JG; de Souza JM; Andrade JN; Rodrigues HA; Guimaraes IM; Carvalho TG; Guatimosim C; Dobransky T; Ribeiro FM
    Neurobiol Dis; 2015 Jan; 73():163-73. PubMed ID: 25160573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabotropic glutamate receptor 5 as a potential therapeutic target in Huntington's disease.
    Ribeiro FM; Hamilton A; Doria JG; Guimaraes IM; Cregan SP; Ferguson SS
    Expert Opin Ther Targets; 2014 Nov; 18(11):1293-304. PubMed ID: 25118797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mutant huntingtin on mGluR5-mediated dual signaling pathways: implications for therapeutic interventions.
    Huang SS; He J; Zhao DM; Xu XY; Tan HP; Li H
    Cell Mol Neurobiol; 2010 Oct; 30(7):1107-15. PubMed ID: 20644995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease.
    Doria JG; Silva FR; de Souza JM; Vieira LB; Carvalho TG; Reis HJ; Pereira GS; Dobransky T; Ribeiro FM
    Br J Pharmacol; 2013 Jun; 169(4):909-21. PubMed ID: 23489026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
    Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM
    Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a transgenic model of Huntington's disease in a non-human primate.
    Yang SH; Cheng PH; Banta H; Piotrowska-Nitsche K; Yang JJ; Cheng EC; Snyder B; Larkin K; Liu J; Orkin J; Fang ZH; Smith Y; Bachevalier J; Zola SM; Li SH; Li XJ; Chan AW
    Nature; 2008 Jun; 453(7197):921-4. PubMed ID: 18488016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hunting for excitement: NMDA receptors in Huntington's disease.
    Ellerby LM
    Neuron; 2002 Mar; 33(6):841-2. PubMed ID: 11906690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of interleukin-1 type 1 receptor enhances the accumulation of mutant huntingtin in the striatum and exacerbates the neurological phenotypes of Huntington's disease mice.
    Wang CE; Li S; Li XJ
    Mol Brain; 2010 Nov; 3():33. PubMed ID: 21044321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Huntington's disease.
    Ribeiro FM; Paquet M; Ferreira LT; Cregan T; Swan P; Cregan SP; Ferguson SS
    J Neurosci; 2010 Jan; 30(1):316-24. PubMed ID: 20053912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenovirus vector-based in vitro neuronal cell model for Huntington's disease with human disease-like differential aggregation and degeneration.
    Dong X; Zong S; Witting A; Lindenberg KS; Kochanek S; Huang B
    J Gene Med; 2012 Jul; 14(7):468-81. PubMed ID: 22700462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of neuronal cell death in Huntington's disease.
    Sawa A; Tomoda T; Bae BI
    Cytogenet Genome Res; 2003; 100(1-4):287-95. PubMed ID: 14526190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inositol 1,4,5-tripshosphate receptor, calcium signalling and Huntington's disease.
    Bezprozvanny I
    Subcell Biochem; 2007; 45():323-35. PubMed ID: 18193642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing huntingtin inclusion formation in primary neuronal cell culture and in vivo by high-capacity adenoviral vectors expressing truncated and full-length huntingtin with polyglutamine expansion.
    Huang B; Schiefer J; Sass C; Kosinski CM; Kochanek S
    J Gene Med; 2008 Mar; 10(3):269-79. PubMed ID: 18067195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative relationships between huntingtin levels, polyglutamine length, inclusion body formation, and neuronal death provide novel insight into huntington's disease molecular pathogenesis.
    Miller J; Arrasate M; Shaby BA; Mitra S; Masliah E; Finkbeiner S
    J Neurosci; 2010 Aug; 30(31):10541-50. PubMed ID: 20685997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant huntingtin.
    Tanaka Y; Igarashi S; Nakamura M; Gafni J; Torcassi C; Schilling G; Crippen D; Wood JD; Sawa A; Jenkins NA; Copeland NG; Borchelt DR; Ross CA; Ellerby LM
    Neurobiol Dis; 2006 Feb; 21(2):381-91. PubMed ID: 16150600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-terminal Huntingtin Knock-In Mice: Implications of Removing the N-terminal Region of Huntingtin for Therapy.
    Liu X; Wang CE; Hong Y; Zhao T; Wang G; Gaertig MA; Sun M; Li S; Li XJ
    PLoS Genet; 2016 May; 12(5):e1006083. PubMed ID: 27203582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease.
    Reddy PH; Charles V; Williams M; Miller G; Whetsell WO; Tagle DA
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1035-45. PubMed ID: 10434303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of inositol 1,4,5-trisphosphate receptors in pathogenesis of Huntington's disease and spinocerebellar ataxias.
    Bezprozvanny I
    Neurochem Res; 2011 Jul; 36(7):1186-97. PubMed ID: 21210219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.