BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21153630)

  • 1. Cadmium chloride inhibits lactate gluconeogenesis in isolated human renal proximal tubules: a cellular metabolomic approach with 13C-NMR.
    Faiz H; Conjard-Duplany A; Boghossian M; Martin G; Baverel G; Ferrier B
    Arch Toxicol; 2011 Sep; 85(9):1067-77. PubMed ID: 21153630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium chloride inhibits lactate gluconeogenesis in mouse renal proximal tubules: An in vitro metabolomic approach with (13)C NMR.
    Faiz H; Boghossian M; Martin G; Baverel G; Ferrier B; Conjard-Duplany A
    Toxicol Lett; 2015 Nov; 238(3):45-52. PubMed ID: 26235813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: a 13C-NMR study.
    Renault S; Faiz H; Gadet R; Ferrier B; Martin G; Baverel G; Conjard-Duplany A
    Toxicol Appl Pharmacol; 2010 Jan; 242(1):9-17. PubMed ID: 19747499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic gluconeogenesis is enhanced in renal proximal tubules of Zucker diabetic fatty rats.
    Eid A; Bodin S; Ferrier B; Delage H; Boghossian M; Martin M; Baverel G; Conjard A
    J Am Soc Nephrol; 2006 Feb; 17(2):398-405. PubMed ID: 16396963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrepancy between the nephrotoxic potencies of cadmium-metallothionein and cadmium chloride and the renal concentration of cadmium in the proximal convoluted tubules.
    Dorian C; Gattone VH; Klaassen CD
    Toxicol Appl Pharmacol; 1995 Jan; 130(1):161-8. PubMed ID: 7839364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atractyloside nephrotoxicity: in vitro studies with suspensions of rat renal fragments and precision-cut cortical slices.
    Obatomi DK; Bach PH
    In Vitr Mol Toxicol; 2000; 13(1):25-36. PubMed ID: 10900405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium transport and toxicity in isolated perfused segments of the renal proximal tubule.
    Robinson MK; Barfuss DW; Zalups RK
    Toxicol Appl Pharmacol; 1993 Jul; 121(1):103-11. PubMed ID: 8337694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C-NMR study of glycerol metabolism in rabbit renal cells of proximal convoluted tubules.
    Jans AW; Willem R
    Eur J Biochem; 1988 May; 174(1):67-73. PubMed ID: 3371365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymes involved in l-lactate metabolism in humans.
    Adeva M; González-Lucán M; Seco M; Donapetry C
    Mitochondrion; 2013 Nov; 13(6):615-29. PubMed ID: 24029012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tricarboxylic acid cycle inhibition by Li+ in the human neuroblastoma SH-SY5Y cell line: a 13C NMR isotopomer analysis.
    Fonseca CP; Jones JG; Carvalho RA; Jeffrey FM; Montezinho LP; Geraldes CF; Castro MM
    Neurochem Int; 2005 Nov; 47(6):385-93. PubMed ID: 16095758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversibility effects on renal and hepatic gluconeogenic enzymes in rats from chronic exposure of cadmium.
    Rajanna B; Fikes E; Simpson H; Chapatwala KD; Hobson M
    J Toxicol Environ Health; 1985; 15(3-4):521-9. PubMed ID: 4032498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nephrotoxicity of CdCl2 and Cd-metallothionein in cultured rat kidney proximal tubules and LLC-PK1 cells.
    Liu J; Liu Y; Klaassen CD
    Toxicol Appl Pharmacol; 1994 Oct; 128(2):264-70. PubMed ID: 7940541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 13C-NMR study on metabolic changes in proximal convoluted tubule cells induced by cadmium.
    Winkel C; Jans AW
    Toxicol Lett; 1990 Sep; 53(1-2):173-4. PubMed ID: 2219161
    [No Abstract]   [Full Text] [Related]  

  • 14. Glycerol and lactate induce reciprocal changes in glucose formation and glutamine production in isolated rabbit kidney-cortex tubules incubated with aspartate.
    Lietz T; Bryła J
    Arch Biochem Biophys; 1995 Aug; 321(2):501-9. PubMed ID: 7646077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel targets of cephaloridine in rabbit renal proximal tubules synthesizing glutamine from alanine.
    Guitton J; Conjard A; Eid A; Martin M; Boghossian M; Delage H; Baverel G; Ferrier B
    Arch Toxicol; 2005 Oct; 79(10):587-94. PubMed ID: 15991025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 13C NMR study on fluxes into the Krebs cycle of rabbit renal proximal tubular cells.
    Jans AW; Leibfritz D
    NMR Biomed; 1989 Apr; 1(4):171-6. PubMed ID: 2641283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose transport and metabolism in rat renal proximal tubules: multicomponent effects of insulin.
    Kleinzeller A; McAvoy EM
    Biochim Biophys Acta; 1986 Apr; 856(3):545-55. PubMed ID: 2938629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of renal toxicity by analysis of regeneration of tubular epithelium in rats given low-dose cadmium chloride or cadmium-polluted rice for 22 months.
    Shibutani M; Mitsumori K; Niho N; Satoh S; Hiratsuka H; Satoh M; Sumiyoshi M; Nishijima M; Katsuki Y; Suzuki J; Nakagawa J; Ando M
    Arch Toxicol; 2000 Dec; 74(10):571-7. PubMed ID: 11201662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium induces phosphorylation and stabilization of c-Fos in HK-2 renal proximal tubular cells.
    Iwatsuki M; Inageda K; Matsuoka M
    Toxicol Appl Pharmacol; 2011 Mar; 251(3):209-16. PubMed ID: 21219922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of energy production to gluconeogenesis in renal cortical tubules.
    Suzuki T; de Hartog M; Gordon EE
    J Cell Physiol; 1975 Aug; 86(1):111-9. PubMed ID: 1176538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.