BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21153706)

  • 1. Metabolic networks to combat oxidative stress in Pseudomonas fluorescens.
    Mailloux RJ; Lemire J; Appanna VD
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):433-42. PubMed ID: 21153706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine metabolism and anti-oxidative defence mechanisms in Pseudomonas fluorescens.
    Alhasawi A; Castonguay Z; Appanna ND; Auger C; Appanna VD
    Microbiol Res; 2015 Feb; 171():26-31. PubMed ID: 25644949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic adaptation and NADPH homeostasis evoked by a sulfur-deficient environment in Pseudomonas fluorescens.
    Legendre F; Tharmalingam S; Bley AM; MacLean A; Appanna VD
    Antonie Van Leeuwenhoek; 2020 May; 113(5):605-616. PubMed ID: 31828449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network.
    Singh R; Lemire J; Mailloux RJ; Appanna VD
    PLoS One; 2008 Jul; 3(7):e2682. PubMed ID: 18628998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity.
    Lemire J; Mailloux R; Auger C; Whalen D; Appanna VD
    Environ Microbiol; 2010 Jun; 12(6):1384-90. PubMed ID: 20353438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens.
    Singh R; Mailloux RJ; Puiseux-Dao S; Appanna VD
    J Bacteriol; 2007 Sep; 189(18):6665-75. PubMed ID: 17573472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress.
    Lemire J; Milandu Y; Auger C; Bignucolo A; Appanna VP; Appanna VD
    FEMS Microbiol Lett; 2010 Aug; 309(2):170-7. PubMed ID: 20597986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic manipulation by
    MacLean A; Bley AM; Appanna VP; Appanna VD
    J Med Microbiol; 2020 Mar; 69(3):339-346. PubMed ID: 31961786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist.
    Mailloux RJ; Bériault R; Lemire J; Singh R; Chénier DR; Hamel RD; Appanna VD
    PLoS One; 2007 Aug; 2(8):e690. PubMed ID: 17668068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc toxicity and ATP production in Pseudomonas fluorescens.
    Alhasawi A; Auger C; Appanna VP; Chahma M; Appanna VD
    J Appl Microbiol; 2014 Jul; 117(1):65-73. PubMed ID: 24629129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic adaptation and oxaloacetate homeostasis in P. fluorescens exposed to aluminum toxicity.
    Lemire J; Kumar P; Mailloux R; Cossar K; Appanna VD
    J Basic Microbiol; 2008 Aug; 48(4):252-9. PubMed ID: 18720501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The overexpression of NADPH-producing enzymes counters the oxidative stress evoked by gallium, an iron mimetic.
    Bériault R; Hamel R; Chenier D; Mailloux RJ; Joly H; Appanna VD
    Biometals; 2007 Apr; 20(2):165-76. PubMed ID: 16900398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen peroxide stress provokes a metabolic reprogramming in Pseudomonas fluorescens: enhanced production of pyruvate.
    Bignucolo A; Appanna VP; Thomas SC; Auger C; Han S; Omri A; Appanna VD
    J Biotechnol; 2013 Sep; 167(3):309-15. PubMed ID: 23871654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of formate in combatting oxidative stress.
    Thomas SC; Alhasawi A; Auger C; Omri A; Appanna VD
    Antonie Van Leeuwenhoek; 2016 Feb; 109(2):263-71. PubMed ID: 26626058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: implications for the bioremediation of metal pollutants.
    Alhasawi A; Costanzi J; Auger C; Appanna ND; Appanna VD
    J Biotechnol; 2015 Apr; 200():38-43. PubMed ID: 25724118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of NADH in the endogeneous metabolism of types Pseudomonas fluorescens].
    Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1974; 168(6-7):843-7. PubMed ID: 4156494
    [No Abstract]   [Full Text] [Related]  

  • 17. Cadmium stress: an oxidative challenge.
    Cuypers A; Plusquin M; Remans T; Jozefczak M; Keunen E; Gielen H; Opdenakker K; Nair AR; Munters E; Artois TJ; Nawrot T; Vangronsveld J; Smeets K
    Biometals; 2010 Oct; 23(5):927-40. PubMed ID: 20361350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyridine nucleotide regulation of cardiac intermediary metabolism.
    Ussher JR; Jaswal JS; Lopaschuk GD
    Circ Res; 2012 Aug; 111(5):628-41. PubMed ID: 22904042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants.
    Couée I; Sulmon C; Gouesbet G; El Amrani A
    J Exp Bot; 2006; 57(3):449-59. PubMed ID: 16397003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues.
    Fujii J; Iuchi Y; Matsuki S; Ishii T
    Asian J Androl; 2003 Sep; 5(3):231-42. PubMed ID: 12937808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.