These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 21153810)
1. A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Dastgheib SM; Amoozegar MA; Khajeh K; Ventosa A Appl Microbiol Biotechnol; 2011 Apr; 90(1):305-12. PubMed ID: 21153810 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. Mnif S; Chamkha M; Sayadi S J Appl Microbiol; 2009 Sep; 107(3):785-94. PubMed ID: 19320948 [TBL] [Abstract][Full Text] [Related]
3. Alcanivorax hongdengensis sp. nov., an alkane-degrading bacterium isolated from surface seawater of the straits of Malacca and Singapore, producing a lipopeptide as its biosurfactant. Wu Y; Lai Q; Zhou Z; Qiao N; Liu C; Shao Z Int J Syst Evol Microbiol; 2009 Jun; 59(Pt 6):1474-9. PubMed ID: 19502338 [TBL] [Abstract][Full Text] [Related]
4. Isolation and characterization of biosurfactant-producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis. Olivera NL; Nievas ML; Lozada M; Del Prado G; Dionisi HM; Siñeriz F Res Microbiol; 2009; 160(1):19-26. PubMed ID: 18983915 [TBL] [Abstract][Full Text] [Related]
5. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Brito EM; Guyoneaud R; Goñi-Urriza M; Ranchou-Peyruse A; Verbaere A; Crapez MA; Wasserman JC; Duran R Res Microbiol; 2006 Oct; 157(8):752-62. PubMed ID: 16815684 [TBL] [Abstract][Full Text] [Related]
6. Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water. Alvarez VM; Santos SC; Casella Rda C; Vital RL; Sebastin GV; Seldin L J Microbiol Biotechnol; 2008 Dec; 18(12):1966-74. PubMed ID: 19131701 [TBL] [Abstract][Full Text] [Related]
7. [Isolation identification and characterization of halotolerant petroleum-degrading bacteria]. Wu T; Xie WJ; Yi YL; Li XB; Wang J; Hu XM Huan Jing Ke Xue; 2012 Nov; 33(11):3949-55. PubMed ID: 23323430 [TBL] [Abstract][Full Text] [Related]
8. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Menezes Bento F; de Oliveira Camargo FA; Okeke BC; Frankenberger WT Microbiol Res; 2005; 160(3):249-55. PubMed ID: 16035236 [TBL] [Abstract][Full Text] [Related]
9. Isolation of an alkane-degrading Alcanivorax sp. strain 2B5 and cloning of the alkB gene. Liu YC; Li LZ; Wu Y; Tian W; Zhang LP; Xu L; Shen QR; Shen B Bioresour Technol; 2010 Jan; 101(1):310-6. PubMed ID: 19733061 [TBL] [Abstract][Full Text] [Related]
10. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Wang L; Wang W; Lai Q; Shao Z Environ Microbiol; 2010 May; 12(5):1230-42. PubMed ID: 20148932 [TBL] [Abstract][Full Text] [Related]
11. Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Zhang Z; Gai L; Hou Z; Yang C; Ma C; Wang Z; Sun B; He X; Tang H; Xu P Bioresour Technol; 2010 Nov; 101(21):8452-6. PubMed ID: 20573503 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of long chain alkanes in halophilic conditions by SadrAzodi SM; Shavandi M; Amoozegar MA; Mehrnia MR 3 Biotech; 2019 Apr; 9(4):141. PubMed ID: 30944788 [TBL] [Abstract][Full Text] [Related]
13. Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils. Al-Saleh ES; Obuekwe C J Basic Microbiol; 2009 Jun; 49(3):256-63. PubMed ID: 19219899 [TBL] [Abstract][Full Text] [Related]
14. Isolation of a novel strain of Planomicrobium chinense from diesel contaminated soil of tropical environment. Das R; Tiwary BN J Basic Microbiol; 2013 Sep; 53(9):723-32. PubMed ID: 23322444 [TBL] [Abstract][Full Text] [Related]
15. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils. Supaphol S; Panichsakpatana S; Trakulnaleamsai S; Tungkananuruk N; Roughjanajirapa P; O'Donnell AG J Microbiol Methods; 2006 Jun; 65(3):432-41. PubMed ID: 16226327 [TBL] [Abstract][Full Text] [Related]
16. Lipopeptide biosurfactant production bacteria Acinetobacter sp. D3-2 and its biodegradation of crude oil. Bao M; Pi Y; Wang L; Sun P; Li Y; Cao L Environ Sci Process Impacts; 2014 Apr; 16(4):897-903. PubMed ID: 24519270 [TBL] [Abstract][Full Text] [Related]
17. Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon-contaminated site. Pirôllo MP; Mariano AP; Lovaglio RB; Costa SG; Walter V; Hausmann R; Contiero J J Appl Microbiol; 2008 Nov; 105(5):1484-90. PubMed ID: 18795978 [TBL] [Abstract][Full Text] [Related]
18. Populations of heavy fuel oil-degrading marine microbial community in presence of oil sorbent materials. Gertler C; Gerdts G; Timmis KN; Yakimov MM; Golyshin PN J Appl Microbiol; 2009 Aug; 107(2):590-605. PubMed ID: 19302488 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. McKew BA; Coulon F; Yakimov MM; Denaro R; Genovese M; Smith CJ; Osborn AM; Timmis KN; McGenity TJ Environ Microbiol; 2007 Jun; 9(6):1562-71. PubMed ID: 17504493 [TBL] [Abstract][Full Text] [Related]
20. Effects of different remediation treatments on crude oil contaminated saline soil. Gao YC; Guo SH; Wang JN; Li D; Wang H; Zeng DH Chemosphere; 2014 Dec; 117():486-93. PubMed ID: 25240723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]