These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21154747)

  • 41. Effects of a checkpoint kinase inhibitor, AZD7762, on tumor suppression and bone remodeling.
    Wang L; Wang Y; Chen A; Jalali A; Liu S; Guo Y; Na S; Nakshatri H; Li BY; Yokota H
    Int J Oncol; 2018 Sep; 53(3):1001-1012. PubMed ID: 30015873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of checkpoint kinase targeting therapy in acute myeloid leukemia with complex karyotype.
    Didier C; Demur C; Grimal F; Jullien D; Manenti S; Ducommun B
    Cancer Biol Ther; 2012 Mar; 13(5):307-13. PubMed ID: 22258035
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Checkpoint Kinase 1 Pharmacological Inhibition Synergizes with DNA-Damaging Agents and Overcomes Platinum Resistance in Basal-Like Breast Cancer.
    Nieto-Jimenez C; Alcaraz-Sanabria A; Martinez-Canales S; Corrales-Sanchez V; Montero JC; Burgos M; Nuncia-Cantarero M; Pandiella A; Galan-Moya EM; Ocaña A
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33261142
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eµ-MYC driven B-cell lymphoma.
    Walton MI; Eve PD; Hayes A; Henley AT; Valenti MR; De Haven Brandon AK; Box G; Boxall KJ; Tall M; Swales K; Matthews TP; McHardy T; Lainchbury M; Osborne J; Hunter JE; Perkins ND; Aherne GW; Reader JC; Raynaud FI; Eccles SA; Collins I; Garrett MD
    Oncotarget; 2016 Jan; 7(3):2329-42. PubMed ID: 26295308
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cross-species genomic and functional analyses identify a combination therapy using a CHK1 inhibitor and a ribonucleotide reductase inhibitor to treat triple-negative breast cancer.
    Bennett CN; Tomlinson CC; Michalowski AM; Chu IM; Luger D; Mittereder LR; Aprelikova O; Shou J; Piwinica-Worms H; Caplen NJ; Hollingshead MG; Green JE
    Breast Cancer Res; 2012 Jul; 14(4):R109. PubMed ID: 22812567
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phase I, dose-escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours.
    Seto T; Esaki T; Hirai F; Arita S; Nosaki K; Makiyama A; Kometani T; Fujimoto C; Hamatake M; Takeoka H; Agbo F; Shi X
    Cancer Chemother Pharmacol; 2013 Sep; 72(3):619-27. PubMed ID: 23892959
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death.
    Del Nagro CJ; Choi J; Xiao Y; Rangell L; Mohan S; Pandita A; Zha J; Jackson PK; O'Brien T
    Cell Cycle; 2014; 13(2):303-14. PubMed ID: 24247149
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Increasing cisplatin sensitivity by schedule-dependent inhibition of AKT and Chk1.
    Duan L; Perez RE; Hansen M; Gitelis S; Maki CG
    Cancer Biol Ther; 2014; 15(12):1600-12. PubMed ID: 25482935
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Panobinostat synergistically enhances the cytotoxic effects of cisplatin, doxorubicin or etoposide on high-risk neuroblastoma cells.
    Wang G; Edwards H; Caldwell JT; Buck SA; Qing WY; Taub JW; Ge Y; Wang Z
    PLoS One; 2013; 8(9):e76662. PubMed ID: 24098799
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Radiosensitization of NSCLC cells to X-rays and carbon ions by the CHK1/CHK2 inhibitor AZD7762, Honokiol and Tunicamycin.
    Liu B; Chen W; Li H; Li F; Jin X; Li Q
    Radiat Environ Biophys; 2020 Nov; 59(4):723-732. PubMed ID: 32857208
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Checkpoint Kinase 1 Inhibition Enhances Cisplatin Cytotoxicity and Overcomes Cisplatin Resistance in SCLC by Promoting Mitotic Cell Death.
    Hsu WH; Zhao X; Zhu J; Kim IK; Rao G; McCutcheon J; Hsu ST; Teicher B; Kallakury B; Dowlati A; Zhang YW; Giaccone G
    J Thorac Oncol; 2019 Jun; 14(6):1032-1045. PubMed ID: 30771522
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The GSK461364 PLK1 inhibitor exhibits strong antitumoral activity in preclinical neuroblastoma models.
    Pajtler KW; Sadowski N; Ackermann S; Althoff K; Schönbeck K; Batzke K; Schäfers S; Odersky A; Heukamp L; Astrahantseff K; Künkele A; Deubzer HE; Schramm A; Sprüssel A; Thor T; Lindner S; Eggert A; Fischer M; Schulte JH
    Oncotarget; 2017 Jan; 8(4):6730-6741. PubMed ID: 28036269
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1.
    Vance S; Liu E; Zhao L; Parsels JD; Parsels LA; Brown JL; Maybaum J; Lawrence TS; Morgan MA
    Cell Cycle; 2011 Dec; 10(24):4321-9. PubMed ID: 22134241
    [TBL] [Abstract][Full Text] [Related]  

  • 54. One therapeutic approach for triple-negative breast cancer: Checkpoint kinase 1 inhibitor AZD7762 combination with neoadjuvant carboplatin.
    Zhu H; Rao Z; Yuan S; You J; Hong C; He Q; Yang B; Du C; Cao J
    Eur J Pharmacol; 2021 Oct; 908():174366. PubMed ID: 34314706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensitization of tumor to ²¹²Pb radioimmunotherapy by gemcitabine involves initial abrogation of G2 arrest and blocked DNA damage repair by interference with Rad51.
    Yong KJ; Milenic DE; Baidoo KE; Brechbiel MW
    Int J Radiat Oncol Biol Phys; 2013 Mar; 85(4):1119-26. PubMed ID: 23200172
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Co-Inhibition of the DNA Damage Response and CHK1 Enhances Apoptosis of Neuroblastoma Cells.
    Ando K; Nakamura Y; Nagase H; Nakagawara A; Koshinaga T; Wada S; Makishima M
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31362335
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of chk1 and plk1 silencing on radiation- or cisplatin-induced cytotoxicity in human malignant cells.
    Gao Q; Huang X; Tang D; Cao Y; Chen G; Lu Y; Zhuang L; Wang S; Xu G; Zhou J; Ma D
    Apoptosis; 2006 Oct; 11(10):1789-800. PubMed ID: 16927022
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Context-dependent cell cycle checkpoint abrogation by a novel kinase inhibitor.
    Massey AJ; Borgognoni J; Bentley C; Foloppe N; Fiumana A; Walmsley L
    PLoS One; 2010 Oct; 5(10):e13123. PubMed ID: 20976184
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy.
    Bartucci M; Svensson S; Romania P; Dattilo R; Patrizii M; Signore M; Navarra S; Lotti F; Biffoni M; Pilozzi E; Duranti E; Martinelli S; Rinaldo C; Zeuner A; Maugeri-Saccà M; Eramo A; De Maria R
    Cell Death Differ; 2012 May; 19(5):768-78. PubMed ID: 22117197
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeting DNA Damage Response in Prostate Cancer by Inhibiting Androgen Receptor-CDC6-ATR-Chk1 Signaling.
    Karanika S; Karantanos T; Li L; Wang J; Park S; Yang G; Zuo X; Song JH; Maity SN; Manyam GC; Broom B; Aparicio AM; Gallick GE; Troncoso P; Corn PG; Navone N; Zhang W; Li S; Thompson TC
    Cell Rep; 2017 Feb; 18(8):1970-1981. PubMed ID: 28228262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.