These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21154840)

  • 1. Relating the sediment phase speciation of arsenic, cadmium, and chromium with their bioavailability for the deposit-feeding polychaete Nereis succinea.
    Baumann Z; Fisher NS
    Environ Toxicol Chem; 2011 Mar; 30(3):747-56. PubMed ID: 21154840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling metal bioaccumulation in a deposit-feeding polychaete from labile sediment fractions and from pore water.
    Baumann Z; Fisher NS
    Sci Total Environ; 2011 Jun; 409(13):2607-15. PubMed ID: 21481438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing the assimilation of arsenic in a deposit-feeding polychaete.
    Baumann Z; Koller A; Fisher NS
    Comp Biochem Physiol C Toxicol Pharmacol; 2012 Jun; 156(1):42-50. PubMed ID: 22507667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid assessments of metal bioavailability in marine sediments using coelomic fluid of sipunculan worms.
    Tan QG; Ke C; Wang WX
    Environ Sci Technol; 2013 Jul; 47(13):7499-505. PubMed ID: 23746306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sediment geochemical controls on CD, CR, and ZN assmilation by the clam Ruditapes philippinarum.
    Fan W; Wang WX
    Environ Toxicol Chem; 2001 Oct; 20(10):2309-17. PubMed ID: 11596765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal speciation in sediment and bioaccumulation in Meretrix lyrata in the Tien Estuary in Vietnam.
    Van Hop N; Thi Quynh Dieu H; Hai Phong N
    Environ Monit Assess; 2017 Jun; 189(6):299. PubMed ID: 28553695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium geochemistry and bioaccumulation in sediments from the lower Hackensack River, New Jersey.
    Martello L; Fuchsman P; Sorensen M; Magar V; Wenning RJ
    Arch Environ Contam Toxicol; 2007 Oct; 53(3):337-50. PubMed ID: 17657462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes.
    Zhang W; Wang WX
    Sci Total Environ; 2018 Mar; 616-617():594-601. PubMed ID: 29100693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation kinetics of polybrominated diphenyl ethers from estuarine sediments to the marine polychaete, Nereis virens.
    Klosterhaus SL; Dreis E; Baker JE
    Environ Toxicol Chem; 2011 May; 30(5):1204-12. PubMed ID: 21337608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geochemistry of Cd, Cr, and Zn in highly contaminated sediments and its influences on assimilation by marine bivalves.
    Fan W; Wang WX; Chen J
    Environ Sci Technol; 2002 Dec; 36(23):5164-71. PubMed ID: 12523434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal pollution in a contaminated bay: relationship between metal geochemical fractionation in sediments and accumulation in a polychaete.
    Fan W; Xu Z; Wang WX
    Environ Pollut; 2014 Aug; 191():50-7. PubMed ID: 24811945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach.
    Casado-Martinez MC; Smith BD; Luoma SN; Rainbow PS
    Aquat Toxicol; 2010 Jun; 98(1):34-43. PubMed ID: 20149466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Have the bioavailabilities of trace metals to a suite of biomonitors changed over three decades in SW England estuaries historically affected by mining?
    Rainbow PS; Kriefman S; Smith BD; Luoma SN
    Sci Total Environ; 2011 Mar; 409(8):1589-602. PubMed ID: 21315427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trace metals partitioning among different sedimentary mineral phases and the deposit-feeding polychaete Armandia brevis.
    Díaz-de-Alba M; Huerta-Diaz MA; Delgadillo-Hinojosa F; Hare L; Galindo-Riaño MD; Siqueiros-Valencia A
    Sci Total Environ; 2016 Feb; 543(Pt A):248-266. PubMed ID: 26595396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace Metals Bioavailability Approach in Intertidal Estuarine Sediments and Bioaccumulation in Associated Nereidid Polychaetes.
    Castiglioni D; Rezende CE; Muniz P; Muir AI; García-Alonso J
    Bull Environ Contam Toxicol; 2018 Apr; 100(4):472-476. PubMed ID: 29487956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the non-essential elements cadmium, mercury, and lead found in fish and sediment from Alaska and California.
    Meador JP; Ernest DW; Kagley AN
    Sci Total Environ; 2005 Mar; 339(1-3):189-205. PubMed ID: 15740769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation kinetics of sediment-associated DE-83 in benthic invertebrates (Nereis succinea, polychaete).
    Tian S; Zhu L
    Chemosphere; 2011 Jun; 84(1):160-5. PubMed ID: 21356541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sediment composition on cadmium bioaccumulation in the clam Meretrix meretrix Linnaeus.
    Wu X; Xie L; Xu L; Wang S; Jia Y
    Environ Toxicol Chem; 2013 Apr; 32(4):841-7. PubMed ID: 23355485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodynamic modelling and the prediction of accumulated trace metal concentrations in the polychaete Arenicola marina.
    Casado-Martinez MC; Smith BD; DelValls TA; Luoma SN; Rainbow PS
    Environ Pollut; 2009 Oct; 157(10):2743-50. PubMed ID: 19482397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment.
    Ardelan MV; Steinnes E; Lierhagen S; Linde SO
    Sci Total Environ; 2009 Dec; 407(24):6255-66. PubMed ID: 19800660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.