These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 21154841)

  • 1. The capacity of switchgrass (Panicum virgatum) to degrade atrazine in a phytoremediation setting.
    Murphy IJ; Coats JR
    Environ Toxicol Chem; 2011 Mar; 30(3):715-22. PubMed ID: 21154841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disposition of atrazine metabolites following uptake and degradation of atrazine in switchgrass.
    Albright VC; Coats JR
    Int J Phytoremediation; 2014; 16(1):62-72. PubMed ID: 24912215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of atrazine in switchgrass-soil column system.
    Albright VC; Murphy IJ; Anderson JA; Coats JR
    Chemosphere; 2013 Feb; 90(6):1847-53. PubMed ID: 23102724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of C
    Khrunyk Y; Schiewer S; Carstens KL; Hu D; Coats JR
    Int J Phytoremediation; 2017 Feb; 19(2):104-112. PubMed ID: 27259078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating phytochemical and microbial contributions to atrazine degradation.
    Hatch KM; Lerch RN; Kremer RJ; Willett CD; Roberts CA; Goyne KW
    J Environ Manage; 2022 Nov; 321():115840. PubMed ID: 35994960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioremediation of atrazine-contaminated soil by forage grasses: transformation, uptake, and detoxification.
    Lin CH; Lerch RN; Garrett HE; George MF
    J Environ Qual; 2008; 37(1):196-206. PubMed ID: 18178893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhizospheric effects on atrazine speciation and degradation in laterite soils of Pennisetum alopecuroides (L.) Spreng.
    Lin Z; Zhen Z; Chen C; Li Y; Luo C; Zhong L; Hu H; Li J; Zhang Y; Liang Y; Yang J; Zhang D
    Environ Sci Pollut Res Int; 2018 May; 25(13):12407-12418. PubMed ID: 29460244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulated rhizodegradation of atrazine by selected plant species.
    Lin CH; Lerch RN; Kremer RJ; Garrett HE
    J Environ Qual; 2011; 40(4):1113-21. PubMed ID: 21712580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of grasses on herbicide fate in the soil column: infiltration of runoff, movement, and degradation.
    Belden JB; Coats JR
    Environ Toxicol Chem; 2004 Sep; 23(9):2251-8. PubMed ID: 15379004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of branched serial first-order decay of atrazine and metabolites in adapted and nonadapted soils.
    Webb RM; Sandstrom MW; Krutz LJ; Shaner DL
    Environ Toxicol Chem; 2011 Sep; 30(9):1973-81. PubMed ID: 21688305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils.
    Sánchez V; López-Bellido FJ; Cañizares P; Rodríguez L
    Chemosphere; 2017 Oct; 185():119-126. PubMed ID: 28688845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of microbial and synthetic surfactant on the biodegradation of atrazine.
    Singh AK; Cameotra SS
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):2088-2097. PubMed ID: 24026208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils.
    Wang Q; Gu M; Ma X; Zhang H; Wang Y; Cui J; Gao W; Gui J
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16758-71. PubMed ID: 26092360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioremediation model for atrazine contaminated agricultural soils using phytoremediation (using Phaseolus vulgaris L.) and a locally adapted microbial consortium.
    Madariaga-Navarrete A; Rodríguez-Pastrana BR; Villagómez-Ibarra JR; Acevedo-Sandoval OA; Perry G; Islas-Pelcastre M
    J Environ Sci Health B; 2017 Jun; 52(6):367-375. PubMed ID: 28277074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of microbial inoculation and vegetation to enhance the dissipation of atrazine and metolachlor in soil.
    Zhao S; Arthur EL; Moorman TB; Coats JR
    Environ Toxicol Chem; 2005 Oct; 24(10):2428-34. PubMed ID: 16268144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atrazine and simazine degradation in Pennisetum rhizosphere.
    Singh N; Megharaj M; Kookana RS; Naidu R; Sethunathan N
    Chemosphere; 2004 Jul; 56(3):257-63. PubMed ID: 15172598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism and persistence of atrazine in several field soils with different atrazine application histories.
    Jablonowski ND; Hamacher G; Martinazzo R; Langen U; Köppchen S; Hofmann D; Burauel P
    J Agric Food Chem; 2010 Dec; 58(24):12869-77. PubMed ID: 21121649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of the herbicide atrazine in a microcosm with riparian forest plants.
    Bicalho ST; Langenbach T
    J Environ Sci Health B; 2012; 47(6):505-11. PubMed ID: 22494373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaccumulation and degradation of atrazine in several Chinese ryegrass genotypes.
    Sui Y; Yang H
    Environ Sci Process Impacts; 2013 Dec; 15(12):2338-44. PubMed ID: 24196985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory assessment of atrazine and fluometuron degradation in soils from a constructed wetland.
    Weaver MA; Zablotowicz RM; Locke MA
    Chemosphere; 2004 Nov; 57(8):853-62. PubMed ID: 15488576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.