These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21154844)

  • 1. Toxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test.
    Wang H; Li Y; Huang H; Xu X; Wang Y
    Environ Toxicol Chem; 2011 Mar; 30(3):692-703. PubMed ID: 21154844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of P-glycoprotein on embryotoxicity of the antifouling biocides to sea urchin (Strongylocentrotus intermedius).
    Xu X; Fu J; Wang H; Zhang B; Wang X; Wang Y
    Ecotoxicology; 2011 Mar; 20(2):419-28. PubMed ID: 21229388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction and assessment of mixture toxicity of compounds in antifouling paints using the sea-urchin embryo-larval bioassay.
    Bellas J
    Aquat Toxicol; 2008 Jul; 88(4):308-15. PubMed ID: 18586336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates.
    Bellas J
    Sci Total Environ; 2006 Aug; 367(2-3):573-85. PubMed ID: 16545431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute toxicity and synergism of binary mixtures of antifouling biocides with heavy metals to embryos of sea urchin Glyptocidaris crenularis.
    Xu X; Wang X; Li Y; Wang Y; Wang Y
    Hum Exp Toxicol; 2011 Aug; 30(8):1009-21. PubMed ID: 20930027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae.
    Jung SM; Bae JS; Kang SG; Son JS; Jeon JH; Lee HJ; Jeon JY; Sidharthan M; Ryu SH; Shin HW
    Mar Pollut Bull; 2017 Nov; 124(2):811-818. PubMed ID: 27919420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina.
    Koutsaftis A; Aoyama I
    Sci Total Environ; 2007 Nov; 387(1-3):166-74. PubMed ID: 17765949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overlapping and unique toxic effects of three alternative antifouling biocides (Diuron, Irgarol 1051
    Moon YS; Kim M; Hong CP; Kang JH; Jung JH
    Ecotoxicol Environ Saf; 2019 Sep; 180():23-32. PubMed ID: 31059904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis.
    Koutsaftis A; Aoyama I
    Environ Toxicol; 2006 Aug; 21(4):432-9. PubMed ID: 16841316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay.
    Xu X; Li Y; Wang Y; Wang Y
    Toxicol In Vitro; 2011 Feb; 25(1):294-300. PubMed ID: 20854890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus.
    Gutner-Hoch E; Martins R; Maia F; Oliveira T; Shpigel M; Weis M; Tedim J; Benayahu Y
    Environ Pollut; 2019 Aug; 251():530-537. PubMed ID: 31108285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species.
    Bao VW; Leung KM; Qiu JW; Lam MH
    Mar Pollut Bull; 2011 May; 62(5):1147-51. PubMed ID: 21420693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of seven antifouling compounds on photosynthesis and inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus).
    Johansson P; Eriksson KM; Axelsson L; Blanck H
    Arch Environ Contam Toxicol; 2012 Oct; 63(3):365-77. PubMed ID: 22743627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review.
    Amara I; Miled W; Slama RB; Ladhari N
    Environ Toxicol Pharmacol; 2018 Jan; 57():115-130. PubMed ID: 29258017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris).
    Mochida K; Ito K; Harino H; Kakuno A; Fujii K
    Environ Toxicol Chem; 2006 Nov; 25(11):3058-64. PubMed ID: 17089732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of new antifouling compounds on the development of sea urchin.
    Kobayashi N; Okamura H
    Mar Pollut Bull; 2002 Aug; 44(8):748-51. PubMed ID: 12269477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis).
    Bellas J; Granmo K; Beiras R
    Mar Pollut Bull; 2005 Nov; 50(11):1382-5. PubMed ID: 16023145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus.
    Bao VW; Lui GC; Leung KM
    Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of toxicant-induced succession for five antifouling compounds on marine periphyton in SWIFT microcosms.
    Ohlauson C; Blanck H
    Biofouling; 2014 Jan; 30(1):41-50. PubMed ID: 24168429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid toxicity assessment of six antifouling booster biocides using a microplate-based chlorophyll fluorescence in Undaria pinnatifida gametophytes.
    Lee H; Depuydt S; Choi S; Han T; Park J
    Ecotoxicology; 2020 Jul; 29(5):559-570. PubMed ID: 32333251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.