These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 2115504)
1. Detection of endotoxin antibody in long-term dialysis patients. Yamagami S; Adachi T; Sugimura T; Wada S; Kishimoto T; Maekawa M; Yoshimura R; Niwa M; Terano Y; Shaldon S Int J Artif Organs; 1990 Apr; 13(4):205-10. PubMed ID: 2115504 [TBL] [Abstract][Full Text] [Related]
2. Detection of bacteria in dialysate and its antibody in long-term hemodialysis patients. Yamagami S; Adachi T; Sugimura T; Kishimoto T; Maekawa M; Niwa M; Shaldon S ASAIO Trans; 1989; 35(3):331-3. PubMed ID: 2597475 [TBL] [Abstract][Full Text] [Related]
3. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study. Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097 [TBL] [Abstract][Full Text] [Related]
4. Potential transfer of endotoxin across high-flux polysulfone membranes. Bommer J; Becker KP; Urbaschek R J Am Soc Nephrol; 1996 Jun; 7(6):883-8. PubMed ID: 8793797 [TBL] [Abstract][Full Text] [Related]
5. The past, present and future of the dialyzer. Mineshima M Contrib Nephrol; 2015; 185():8-14. PubMed ID: 26023010 [TBL] [Abstract][Full Text] [Related]
6. A prospective study of pyrogenic reactions in hemodialysis patients using bicarbonate dialysis fluids filtered to remove bacteria and endotoxin. Pegues DA; Oettinger CW; Bland LA; Oliver JC; Arduino MJ; Aguero SM; McAllister SK; Gordon SM; Favero MS; Jarvis WR J Am Soc Nephrol; 1992 Oct; 3(4):1002-7. PubMed ID: 1450362 [TBL] [Abstract][Full Text] [Related]
7. High-permeable membranes and hypersensitivity-like reactions: role of dialysis fluid contamination. Bigazzi R; Atti M; Baldari G Blood Purif; 1990; 8(4):190-8. PubMed ID: 2085427 [TBL] [Abstract][Full Text] [Related]
8. Permeability of cellulosic and non-cellulosic membranes to endotoxin subunits and cytokine production during in-vitro haemodialysis. Ureña P; Herbelin A; Zingraff J; Lair M; Man NK; Descamps-Latscha B; Drüeke T Nephrol Dial Transplant; 1992; 7(1):16-28. PubMed ID: 1316577 [TBL] [Abstract][Full Text] [Related]
9. The role of dialyzer membrane flux in bio-incompatibility. Davenport A Hemodial Int; 2008 Oct; 12 Suppl 2():S29-33. PubMed ID: 18837767 [TBL] [Abstract][Full Text] [Related]
11. No evidence for endotoxin transfer across high flux polysulfone membranes. Bommer J; Becker KP; Urbaschek R; Ritz E; Urbaschek B Clin Nephrol; 1987 Jun; 27(6):278-82. PubMed ID: 3608251 [TBL] [Abstract][Full Text] [Related]
12. [A study of the Limulus amebocyte lysate-reactive substances flushed from cellulose hemodialysis membranes]. Strokov AG; Baeva LB; Levitskiĭ ER; Tiagny-Riadno LI Urol Nefrol (Mosk); 1993; (3):41-4. PubMed ID: 7941162 [TBL] [Abstract][Full Text] [Related]
13. In vitro study of the transfer of cytokine-inducing substances across selected high-flux hemodialysis membranes. Evans RC; Holmes CJ Blood Purif; 1991; 9(2):92-101. PubMed ID: 1760147 [TBL] [Abstract][Full Text] [Related]
14. Membranes for endotoxin removal from dialysate: considerations on feasibility of commercial ceramic membranes. Bender H; Pfläzel A; Saunders N; Czermak P; Catapano G; Vienken J Artif Organs; 2000 Oct; 24(10):826-9. PubMed ID: 11091173 [TBL] [Abstract][Full Text] [Related]
15. Biocompatibility of hemodialysis membranes: evaluation in an ovine model. Burhop KE; Johnson RJ; Simpson J; Chenoweth DE; Borgia J J Lab Clin Med; 1993 Feb; 121(2):276-93. PubMed ID: 8433041 [TBL] [Abstract][Full Text] [Related]
16. Clinical evaluation of a new high-flux cellulose acetate membrane. Schaefer RM; Huber L; Gilge U; Bausewein K; Vienken J; Heidland A Int J Artif Organs; 1989 Feb; 12(2):85-90. PubMed ID: 2651325 [TBL] [Abstract][Full Text] [Related]
17. [The removal efficiency of beta 2-microglobulin, alpha 1-microglobulin and alpha 1-acid glycoprotein by using dialyzers in the bloodstream and transference of endotoxin through membranes]. Ueyama S; Kiyomizu S; Endo K; Nagayama N; Oda K; Ohashi T; Yamashita W; Harada R; Arima T Fukuoka Igaku Zasshi; 1990 Nov; 81(11):355-8. PubMed ID: 1703122 [TBL] [Abstract][Full Text] [Related]
18. Biocompatibility and functional performance of a polyethylene glycol acid-grafted cellulosic membrane for hemodialysis. Sirolli V; Di Stante S; Stuard S; Di Liberato L; Amoroso L; Cappelli P; Bonomini M Int J Artif Organs; 2000 Jun; 23(6):356-64. PubMed ID: 10919752 [TBL] [Abstract][Full Text] [Related]
19. Assessment of the association between increasing membrane pore size and endotoxin permeability using a novel experimental dialysis simulation set-up. Schepers E; Glorieux G; Eloot S; Hulko M; Boschetti-de-Fierro A; Beck W; Krause B; Van Biesen W BMC Nephrol; 2018 Jan; 19(1):1. PubMed ID: 29304774 [TBL] [Abstract][Full Text] [Related]
20. Clinical study of high-flux cuprammonium rayon hemodialysis membranes. Opatrný K; Sulková S; Lopot F; Vít L; Válek A; Opatrný K Artif Organs; 1993 Dec; 17(12):971-6. PubMed ID: 8110071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]