These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 21155550)
1. New fragment weighting scheme for the Bayesian inference network in ligand-based virtual screening. Abdo A; Salim N J Chem Inf Model; 2011 Jan; 51(1):25-32. PubMed ID: 21155550 [TBL] [Abstract][Full Text] [Related]
2. Similarity-based virtual screening with a bayesian inference network. Abdo A; Salim N ChemMedChem; 2009 Feb; 4(2):210-8. PubMed ID: 19072820 [TBL] [Abstract][Full Text] [Related]
3. Implementing relevance feedback in ligand-based virtual screening using Bayesian inference network. Abdo A; Salim N; Ahmed A J Biomol Screen; 2011 Oct; 16(9):1081-8. PubMed ID: 21862688 [TBL] [Abstract][Full Text] [Related]
4. Ligand-based virtual screening using Bayesian inference network and reweighted fragments. Ahmed A; Abdo A; Salim N ScientificWorldJournal; 2012; 2012():410914. PubMed ID: 22623895 [TBL] [Abstract][Full Text] [Related]
5. Inverse frequency weighting of fragments for similarity-based virtual screening. Arif SM; Holliday JD; Willett P J Chem Inf Model; 2010 Aug; 50(8):1340-9. PubMed ID: 20672867 [TBL] [Abstract][Full Text] [Related]
6. Bayesian screening for active compounds in high-dimensional chemical spaces combining property descriptors and molecular fingerprints. Vogt M; Bajorath J Chem Biol Drug Des; 2008 Jan; 71(1):8-14. PubMed ID: 18069988 [TBL] [Abstract][Full Text] [Related]
11. Critical comparison of virtual screening methods against the MUV data set. Tiikkainen P; Markt P; Wolber G; Kirchmair J; Distinto S; Poso A; Kallioniemi O J Chem Inf Model; 2009 Oct; 49(10):2168-78. PubMed ID: 19799417 [TBL] [Abstract][Full Text] [Related]
12. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching. Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A J Chem Inf Model; 2006; 46(2):462-70. PubMed ID: 16562973 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. Venkatraman V; Pérez-Nueno VI; Mavridis L; Ritchie DW J Chem Inf Model; 2010 Dec; 50(12):2079-93. PubMed ID: 21090728 [TBL] [Abstract][Full Text] [Related]
14. Similarity metrics for ligands reflecting the similarity of the target proteins. Schuffenhauer A; Floersheim P; Acklin P; Jacoby E J Chem Inf Comput Sci; 2003; 43(2):391-405. PubMed ID: 12653501 [TBL] [Abstract][Full Text] [Related]
15. Scoring ligand similarity in structure-based virtual screening. Zavodszky MI; Rohatgi A; Van Voorst JR; Yan H; Kuhn LA J Mol Recognit; 2009; 22(4):280-92. PubMed ID: 19235177 [TBL] [Abstract][Full Text] [Related]
16. A knowledge-based weighting approach to ligand-based virtual screening. Stiefl N; Zaliani A J Chem Inf Model; 2006; 46(2):587-96. PubMed ID: 16562987 [TBL] [Abstract][Full Text] [Related]
18. Virtual drug screen schema based on multiview similarity integration and ranking aggregation. Kang H; Sheng Z; Zhu R; Huang Q; Liu Q; Cao Z J Chem Inf Model; 2012 Mar; 52(3):834-43. PubMed ID: 22332590 [TBL] [Abstract][Full Text] [Related]
19. Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring. Radestock S; Weil T; Renner S J Chem Inf Model; 2008 May; 48(5):1104-17. PubMed ID: 18442221 [TBL] [Abstract][Full Text] [Related]
20. Comparative evaluation of 3D virtual ligand screening methods: impact of the molecular alignment on enrichment. Giganti D; Guillemain H; Spadoni JL; Nilges M; Zagury JF; Montes M J Chem Inf Model; 2010 Jun; 50(6):992-1004. PubMed ID: 20527883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]