BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21155580)

  • 1. Protonation of the dinitrogen-reduction catalyst [HIPTN3N]Mo(III) investigated by ENDOR spectroscopy.
    Kinney RA; McNaughton RL; Chin JM; Schrock RR; Hoffman BM
    Inorg Chem; 2011 Jan; 50(2):418-20. PubMed ID: 21155580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center.
    Yandulov DV; Schrock RR
    Science; 2003 Jul; 301(5629):76-8. PubMed ID: 12843387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of dinitrogen to ammonia at a well-protected reaction site in a molybdenum triamidoamine complex.
    Yandulov DV; Schrock RR
    J Am Chem Soc; 2002 Jun; 124(22):6252-3. PubMed ID: 12033849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies relevant to catalytic reduction of dinitrogen to ammonia by molybdenum triamidoamine complexes.
    Yandulov DV; Schrock RR
    Inorg Chem; 2005 Feb; 44(4):1103-17. PubMed ID: 15859292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of molybdenum complexes that contain "hybrid" triamidoamine ligands, [(hexaisopropylterphenyl-NCH2CH2)2NCH2CH2N-aryl]3-, and studies relevant to catalytic reduction of dinitrogen.
    Weare WW; Schrock RR; Hock AS; Müller P
    Inorg Chem; 2006 Nov; 45(23):9185-96. PubMed ID: 17083216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic reduction of dinitrogen to ammonia at well-defined single metal sites.
    Schrock RR
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):959-69; discussion 1035-40. PubMed ID: 15901545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of {[HIPTN(3)N]Mo(III)H}(-) by heterolytic cleavage of H(2) as established by EPR and ENDOR spectroscopy.
    Kinney RA; Hetterscheid DG; Hanna BS; Schrock RR; Hoffman BM
    Inorg Chem; 2010 Jan; 49(2):704-13. PubMed ID: 20000748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrochemical investigation of intermediates and processes involved in the catalytic reduction of dinitrogen by [HIPTN3N]Mo (HIPTN3N = (3,5-(2,4,6-i-Pr3C6H2)2C6H3NCH2CH2)3N).
    Munisamy T; Schrock RR
    Dalton Trans; 2012 Jan; 41(1):130-7. PubMed ID: 22031021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of [(DPPNCH2CH2)3N]3- molybdenum complexes (DPP = 3,5-(2,5-Diisopropylpyrrolyl)2C6H3) and studies relevant to catalytic reduction of dinitrogen.
    Reithofer MR; Schrock RR; Müller P
    J Am Chem Soc; 2010 Jun; 132(24):8349-58. PubMed ID: 20499910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of [(HIPTNCH2CH2)3N]V compounds (HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3) and an evaluation of vanadium for the reduction of dinitrogen to ammonia.
    Smythe NC; Schrock RR; Müller P; Weare WW
    Inorg Chem; 2006 Nov; 45(23):9197-205. PubMed ID: 17083217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles investigation of the Schrock mechanism of dinitrogen reduction employing the full HIPTN3N ligand.
    Schenk S; Le Guennic B; Kirchner B; Reiher M
    Inorg Chem; 2008 May; 47(9):3634-50. PubMed ID: 18357978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of diamidopyrrolyl molybdenum complexes relevant to reduction of dinitrogen to ammonia.
    Chin JM; Schrock RR; Müller P
    Inorg Chem; 2010 Sep; 49(17):7904-16. PubMed ID: 20799738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center.
    Schrock RR
    Acc Chem Res; 2005 Dec; 38(12):955-62. PubMed ID: 16359167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of [(HIPTNCH2CH2)3N]Cr Compounds (HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3) and an evaluation of chromium for the reduction of dinitrogen to ammonia.
    Smythe NC; Schrock RR; Müller P; Weare WW
    Inorg Chem; 2006 Sep; 45(18):7111-8. PubMed ID: 16933911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex.
    Merakeb L; Bennaamane S; De Freitas J; Clot E; Mézailles N; Robert M
    Angew Chem Int Ed Engl; 2022 Oct; 61(40):e202209899. PubMed ID: 35941077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and reactions of molybdenum triamidoamine complexes containing hexaisopropylterphenyl substituents.
    Yandulov DV; Schrock RR; Rheingold AL; Ceccarelli C; Davis WM
    Inorg Chem; 2003 Feb; 42(3):796-813. PubMed ID: 12562193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkylation of dinitrogen in [(HIPTNCH(2)CH(2))(3)N]Mo complexes (HIPT = 3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(3)).
    Kupfer T; Schrock RR
    J Am Chem Soc; 2009 Sep; 131(35):12829-37. PubMed ID: 19673523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment.
    Schrock RR
    Angew Chem Int Ed Engl; 2008; 47(30):5512-22. PubMed ID: 18537212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction and protonation of Mo(IV) imido complexes with depe coligands: generation and reactivity of a S = 1/2 Mo(III) alkylnitrene intermediate.
    Dreher A; Meyer S; Näther C; Westphal A; Broda H; Sarkar B; Kaim W; Kurz P; Tuczek F
    Inorg Chem; 2013 Mar; 52(5):2335-52. PubMed ID: 23398558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center.
    Weare WW; Dai X; Byrnes MJ; Chin JM; Schrock RR; Müller P
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17099-106. PubMed ID: 17085586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.