These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 21155612)
1. Classifying large chemical data sets: using a regularized potential function method. Mussa HY; Hawizy L; Nigsch F; Glen RC J Chem Inf Model; 2011 Jan; 51(1):4-14. PubMed ID: 21155612 [TBL] [Abstract][Full Text] [Related]
2. A novel kernel-based maximum a posteriori classification method. Xu Z; Huang K; Zhu J; King I; Lyu MR Neural Netw; 2009 Sep; 22(7):977-87. PubMed ID: 19167865 [TBL] [Abstract][Full Text] [Related]
3. Direct Kernel Perceptron (DKP): ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation. Fernández-Delgado M; Cernadas E; Barro S; Ribeiro J; Neves J Neural Netw; 2014 Feb; 50():60-71. PubMed ID: 24287336 [TBL] [Abstract][Full Text] [Related]
4. New support vector-based design method for binary hierarchical classifiers for multi-class classification problems. Wang YC; Casasent D Neural Netw; 2008; 21(2-3):502-10. PubMed ID: 18187285 [TBL] [Abstract][Full Text] [Related]
12. Improving gene expression cancer molecular pattern discovery using nonnegative principal component analysis. Han X Genome Inform; 2008; 21():200-11. PubMed ID: 19425159 [TBL] [Abstract][Full Text] [Related]
13. [Application of support vector machines to classification of blood cells]. Wang H; Zheng C; Li Y; Zhu H; Yan X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):484-7. PubMed ID: 14565019 [TBL] [Abstract][Full Text] [Related]
14. Support vector machines for dyadic data. Hochreiter S; Obermayer K Neural Comput; 2006 Jun; 18(6):1472-510. PubMed ID: 16764511 [TBL] [Abstract][Full Text] [Related]
15. Contourlet-based mammography mass classification using the SVM family. Moayedi F; Azimifar Z; Boostani R; Katebi S Comput Biol Med; 2010 Apr; 40(4):373-83. PubMed ID: 20181330 [TBL] [Abstract][Full Text] [Related]
16. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. Hua S; Sun Z J Mol Biol; 2001 Apr; 308(2):397-407. PubMed ID: 11327775 [TBL] [Abstract][Full Text] [Related]
17. Low rank updated LS-SVM classifiers for fast variable selection. Ojeda F; Suykens JA; De Moor B Neural Netw; 2008; 21(2-3):437-49. PubMed ID: 18343309 [TBL] [Abstract][Full Text] [Related]
19. Handling missing values in support vector machine classifiers. Pelckmans K; De Brabanter J; Suykens JA; De Moor B Neural Netw; 2005; 18(5-6):684-92. PubMed ID: 16111866 [TBL] [Abstract][Full Text] [Related]
20. Efficient design of bio-basis function to predict protein functional sites using kernel-based classifiers. Maji P; Das C IEEE Trans Nanobioscience; 2010 Dec; 9(4):242-9. PubMed ID: 20889438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]