These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21155658)

  • 1. Vaccinomics, predictive vaccinology and the future of vaccine development.
    Haralambieva IH; Poland GA
    Future Microbiol; 2010 Dec; 5(12):1757-60. PubMed ID: 21155658
    [No Abstract]   [Full Text] [Related]  

  • 2. MHC and MHC-like molecules in the design of vaccines.
    Apostolopoulos V
    Curr Pharm Des; 2009; 15(28):3207-8. PubMed ID: 19860670
    [No Abstract]   [Full Text] [Related]  

  • 3. Trends affecting the future of vaccine development and delivery: the role of demographics, regulatory science, the anti-vaccine movement, and vaccinomics.
    Poland GA; Jacobson RM; Ovsyannikova IG
    Vaccine; 2009 May; 27(25-26):3240-4. PubMed ID: 19200833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HLA-DR: molecular insights and vaccine design.
    Stern LJ; Calvo-Calle JM
    Curr Pharm Des; 2009; 15(28):3249-61. PubMed ID: 19860674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vaccinomics and bioinformatics: accelerants for the next golden age of vaccinology.
    Poland GA; Oberg AL
    Vaccine; 2010 Apr; 28(20):3509-10. PubMed ID: 20394850
    [No Abstract]   [Full Text] [Related]  

  • 6. Information technologies for vaccine research.
    Brusic V; August JT; Petrovsky N
    Expert Rev Vaccines; 2005 Jun; 4(3):407-17. PubMed ID: 16026252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticles and vaccine development.
    Salazar-González JA; González-Ortega O; Rosales-Mendoza S
    Expert Rev Vaccines; 2015; 14(9):1197-211. PubMed ID: 26152550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity in vaccine immune response: the role of immunogenetics and the emerging field of vaccinomics.
    Poland GA; Ovsyannikova IG; Jacobson RM; Smith DI
    Clin Pharmacol Ther; 2007 Dec; 82(6):653-64. PubMed ID: 17971814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vaccine process technology.
    Josefsberg JO; Buckland B
    Biotechnol Bioeng; 2012 Jun; 109(6):1443-60. PubMed ID: 22407777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery.
    Sette A; Fikes J
    Curr Opin Immunol; 2003 Aug; 15(4):461-70. PubMed ID: 12900280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agility in adversity: Vaccines on Demand.
    De Groot AS; Moise L; Olive D; Einck L; Martin W
    Expert Rev Vaccines; 2016 Sep; 15(9):1087-91. PubMed ID: 27389971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multiepitopic theoretical fusion construct based on in-silico epitope screening of known vaccine candidates for protection against wide range of enterobacterial pathogens.
    Kumar A; Harjai K; Chhibber S
    Hum Immunol; 2019 Jul; 80(7):493-502. PubMed ID: 30769032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vaccinomics Approach to the Identification of Candidate Protective Antigens for the Control of Tick Vector Infestations and
    Contreras M; Alberdi P; Fernández De Mera IG; Krull C; Nijhof A; Villar M; De La Fuente J
    Front Cell Infect Microbiol; 2017; 7():360. PubMed ID: 28848718
    [No Abstract]   [Full Text] [Related]  

  • 14. Lessons learned in the analysis of high-dimensional data in vaccinomics.
    Oberg AL; McKinney BA; Schaid DJ; Pankratz VS; Kennedy RB; Poland GA
    Vaccine; 2015 Sep; 33(40):5262-70. PubMed ID: 25957070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoinformatics Design of Multi-Epitope Peptide-Based Vaccine Against
    Sanches RCO; Tiwari S; Ferreira LCG; Oliveira FM; Lopes MD; Passos MJF; Maia EHB; Taranto AG; Kato R; Azevedo VAC; Lopes DO
    Front Immunol; 2021; 12():621706. PubMed ID: 33737928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-made vaccine antigens and biopharmaceuticals.
    Daniell H; Singh ND; Mason H; Streatfield SJ
    Trends Plant Sci; 2009 Dec; 14(12):669-79. PubMed ID: 19836291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of MHC II structural features in the design of vaccines for organ-specific autoimmune diseases.
    Moustakas AK; Papadopoulos GK
    Curr Pharm Des; 2009; 15(28):3262-73. PubMed ID: 19860675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of MHC-I and MHC-II responses in vaccine efficacy against lethal herpes simplex virus type 1 challenge.
    Ghiasi H; Roopenian DC; Slanina S; Cai S; Nesburn AB; Wechsler SL
    Immunology; 1997 Jul; 91(3):430-5. PubMed ID: 9301533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse Vaccinology and Its Applications.
    Kanampalliwar AM
    Methods Mol Biol; 2020; 2131():1-16. PubMed ID: 32162247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospects for subunit vaccines: Technology advances resulting in efficacious antigens requires matching advances in early clinical trial investment.
    McClean S
    Hum Vaccin Immunother; 2016 Dec; 12(12):3103-3106. PubMed ID: 27494532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.