These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 21155849)
1. Specific regions in the Sod1 locus of the ericoid mycorrhizal fungus Oidiodendron maius from metal-enriched soils show a different sequence polymorphism. Vallino M; Zampieri E; Murat C; Girlanda M; Picarella S; Pitet M; Portis E; Martino E; Perotto S FEMS Microbiol Ecol; 2011 Feb; 75(2):321-31. PubMed ID: 21155849 [TBL] [Abstract][Full Text] [Related]
2. Cu,Zn superoxide dismutase and zinc stress in the metal-tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn. Vallino M; Martino E; Boella F; Murat C; Chiapello M; Perotto S FEMS Microbiol Lett; 2009 Apr; 293(1):48-57. PubMed ID: 19278525 [TBL] [Abstract][Full Text] [Related]
3. OmGOGAT-disruption in the ericoid mycorrhizal fungus Oidiodendron maius induces reorganization of the N pathway and reduces tolerance to heavy-metals. Khouja HR; Daghino S; Abbà S; Boutaraa F; Chalot M; Blaudez D; Martino E; Perotto S Fungal Genet Biol; 2014 Oct; 71():1-8. PubMed ID: 25128845 [TBL] [Abstract][Full Text] [Related]
4. Imaging mycorrhizal fungal transformants that express EGFP during ericoid endosymbiosis. Martino E; Murat C; Vallino M; Bena A; Perotto S; Spanu P Curr Genet; 2007 Aug; 52(2):65-75. PubMed ID: 17589849 [TBL] [Abstract][Full Text] [Related]
5. Gene expression and role in cadmium tolerance of two PLAC8-containing proteins identified in the ericoid mycorrhizal fungus Oidiodendron maius. Di Vietro L; Daghino S; Abbà S; Perotto S Fungal Biol; 2014 Aug; 118(8):695-703. PubMed ID: 25110132 [TBL] [Abstract][Full Text] [Related]
6. Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis. Daghino S; Martino E; Perotto S Mycorrhiza; 2016 May; 26(4):263-74. PubMed ID: 26710764 [TBL] [Abstract][Full Text] [Related]
7. Gene expression of the ericoid mycorrhizal fungus Oidiodendron maius in the presence of high zinc concentrations. Vallino M; Drogo V; Abba' S; Perotto S Mycorrhiza; 2005 Jul; 15(5):333-44. PubMed ID: 15558329 [TBL] [Abstract][Full Text] [Related]
8. SOD1-targeted gene disruption in the ericoid mycorrhizal fungus Oidiodendron maius reduces conidiation and the capacity for mycorrhization. Abbà S; Khouja HR; Martino E; Archer DB; Perotto S Mol Plant Microbe Interact; 2009 Nov; 22(11):1412-21. PubMed ID: 19810810 [TBL] [Abstract][Full Text] [Related]
9. Diversity of culturable ericoid mycorrhizal fungi of Rhododendron decorum in Yunnan, China. Tian W; Zhang CQ; Qiao P; Milne R Mycologia; 2011; 103(4):703-9. PubMed ID: 21289105 [TBL] [Abstract][Full Text] [Related]
10. Common and metal-specific proteomic responses to cadmium and zinc in the metal tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn. Chiapello M; Martino E; Perotto S Metallomics; 2015 May; 7(5):805-15. PubMed ID: 25761960 [TBL] [Abstract][Full Text] [Related]
11. Genomic suppression subtractive hybridization as a tool to identify differences in mycorrhizal fungal genomes. Murat C; Zampieri E; Vallino M; Daghino S; Perotto S; Bonfante P FEMS Microbiol Lett; 2011 May; 318(2):115-22. PubMed ID: 21362020 [TBL] [Abstract][Full Text] [Related]
12. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Hassan Sel D; Boon E; St-Arnaud M; Hijri M Mol Ecol; 2011 Aug; 20(16):3469-83. PubMed ID: 21668808 [TBL] [Abstract][Full Text] [Related]
13. Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Gonçalves SC; Portugal A; Gonçalves MT; Vieira R; Martins-Loução MA; Freitas H Mycorrhiza; 2007 Nov; 17(8):677-686. PubMed ID: 17710447 [TBL] [Abstract][Full Text] [Related]
14. Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere's Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina. Bruzone MC; Fontenla SB; Vohník M Mycorrhiza; 2015 Jan; 25(1):25-40. PubMed ID: 24838300 [TBL] [Abstract][Full Text] [Related]
15. Influence of zinc ions on protein secretion in a heavy metal tolerant strain of the ericoid mycorrhizal fungus Oidiodendron maius. Martino E; Franco B; Piccoli G; Stocchi V; Perotto S Mol Cell Biochem; 2002 Feb; 231(1-2):179-85. PubMed ID: 11952161 [TBL] [Abstract][Full Text] [Related]
16. Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Vallino M; Massa N; Lumini E; Bianciotto V; Berta G; Bonfante P Environ Microbiol; 2006 Jun; 8(6):971-83. PubMed ID: 16689718 [TBL] [Abstract][Full Text] [Related]
17. Metallophyte status of violets of the section Melanium. Hermann B; Katarina VM; Paula P; Matevž L; Neva S; Primož P; Primož V; Luka J; Marjana R Chemosphere; 2013 Nov; 93(9):1844-55. PubMed ID: 23859423 [TBL] [Abstract][Full Text] [Related]
18. High-level molecular diversity of copper-zinc superoxide dismutase genes among and within species of arbuscular Mycorrhizal fungi. Corradi N; Ruffner B; Croll D; Colard A; Horák A; Sanders IR Appl Environ Microbiol; 2009 Apr; 75(7):1970-8. PubMed ID: 19201958 [TBL] [Abstract][Full Text] [Related]
19. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Schützendübel A; Polle A J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381 [TBL] [Abstract][Full Text] [Related]
20. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Rajkumar M; Vara Prasad MN; Freitas H; Ae N Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]