BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21156059)

  • 1. Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells.
    Aidemark M; Tjellström H; Sandelius AS; Stålbrand H; Andreasson E; Rasmusson AG; Widell S
    BMC Plant Biol; 2010 Dec; 10():274. PubMed ID: 21156059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antibiotic peptaibol alamethicin from Trichoderma permeabilises Arabidopsis root apical meristem and epidermis but is antagonised by cellulase-induced resistance to alamethicin.
    Dotson BR; Soltan D; Schmidt J; Areskoug M; Rabe K; Swart C; Widell S; Rasmusson AG
    BMC Plant Biol; 2018 Aug; 18(1):165. PubMed ID: 30097019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells.
    Matic S; Geisler DA; Møller IM; Widell S; Rasmusson AG
    Biochem J; 2005 Aug; 389(Pt 3):695-704. PubMed ID: 15836437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells.
    Aidemark M; Andersson CJ; Rasmusson AG; Widell S
    BMC Plant Biol; 2009 Mar; 9():27. PubMed ID: 19284621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and membrane modifying porperties of suzukacillin, a peptide antibiotic related to alamethicin. Part B. Pore formation in black lipid films.
    Boheim G; Janko K; Leibfritz D; Ooka T; König WA; Jung G
    Biochim Biophys Acta; 1976 Apr; 433(1):182-99. PubMed ID: 1260058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: Alamethicin can capture lipid-like molecules in the membrane.
    Afanasyeva EF; Syryamina VN; Dzuba SA
    J Chem Phys; 2017 Jan; 146(1):011103. PubMed ID: 28063425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substantiation in Enterococcus faecalis of dose-dependent resistance and cross-resistance to pore-forming antimicrobial peptides by use of a polydiacetylene-based colorimetric assay.
    Mehla J; Sood SK
    Appl Environ Microbiol; 2011 Feb; 77(3):786-93. PubMed ID: 21115699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alamethicin-induced pore formation in biological membranes.
    Ritov VB; Tverdislova IL; Avakyan TYu ; Menshikova EV; Leikin YuN ; Bratkovskaya LB; Shimon RG
    Gen Physiol Biophys; 1992 Feb; 11(1):49-58. PubMed ID: 1499980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin.
    Schwarz G; Stankowski S; Rizzo V
    Biochim Biophys Acta; 1986 Sep; 861(1):141-51. PubMed ID: 3756150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation and peptide-lipid interactions of alamethicin incorporated in phospholipid membranes: polarized infrared and spin-label EPR spectroscopy.
    Marsh D
    Biochemistry; 2009 Feb; 48(4):729-37. PubMed ID: 19133787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backbone dynamics of detergent-solubilized alamethicin from amide hydrogen exchange measurements.
    Yee A; Szymczyna B; O'Neil JD
    Biochemistry; 1999 May; 38(20):6489-98. PubMed ID: 10350467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane permeabilisation and antimycoplasmic activity of the 18-residue peptaibols, trichorzins PA.
    Béven L; Duval D; Rebuffat S; Riddell FG; Bodo B; Wróblewski H
    Biochim Biophys Acta; 1998 Jun; 1372(1):78-90. PubMed ID: 9651487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell, time-resolved study of the effects of the antimicrobial peptide alamethicin on Bacillus subtilis.
    Barns KJ; Weisshaar JC
    Biochim Biophys Acta; 2016 Apr; 1858(4):725-32. PubMed ID: 26777771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alamethicin and related membrane channel forming polypeptides.
    Mathew MK; Balaram P
    Mol Cell Biochem; 1983; 50(1):47-64. PubMed ID: 6302469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect formation of lytic peptides in lipid membranes and their influence on the thermodynamic properties of the pore environment.
    Oliynyk V; Kaatze U; Heimburg T
    Biochim Biophys Acta; 2007 Feb; 1768(2):236-45. PubMed ID: 17141732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane permeabilization of a mammalian neuroendocrine cell type (PC12) by the channel-forming peptides zervamicin, alamethicin, and gramicidin.
    Weidema AF; Kropacheva TN; Raap J; Ypey DL
    Chem Biodivers; 2007 Jun; 4(6):1347-59. PubMed ID: 17589868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels.
    Cosette P; Rebuffat S; Bodo B; Molle G
    Biochim Biophys Acta; 1999 Nov; 1461(1):113-22. PubMed ID: 10556493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alamethicin and synthetic peptide fragments as uncouplers of mitochondrial oxidative phosphorylation. Effect of chain length and charge.
    Mathew MK; Nagaraj R; Balaram P
    Biochem Biophys Res Commun; 1981 Jan; 98(2):548-55. PubMed ID: 7225113
    [No Abstract]   [Full Text] [Related]  

  • 19. Annexins V and XII alter the properties of planar lipid bilayers seen by conductance probes.
    Sokolov Y; Mailliard WS; Tranngo N; Isas M; Luecke H; Haigler HT; Hall JE
    J Gen Physiol; 2000 May; 115(5):571-82. PubMed ID: 10779315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alamethicin biosynthesis: acetylation of the amino terminus and attachment of phenylalaninol.
    Mohr H; Kleinkauf H
    Biochim Biophys Acta; 1978 Oct; 526(2):375-86. PubMed ID: 568941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.