BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21156136)

  • 1. Local geometry and elasticity in compact chromatin structure.
    Koslover EF; Fuller CJ; Straight AF; Spakowitz AJ
    Biophys J; 2010 Dec; 99(12):3941-50. PubMed ID: 21156136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of the 30-nanometer chromatin fiber.
    Wedemann G; Langowski J
    Biophys J; 2002 Jun; 82(6):2847-59. PubMed ID: 12023209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changing chromatin fiber conformation by nucleosome repositioning.
    Müller O; Kepper N; Schöpflin R; Ettig R; Rippe K; Wedemann G
    Biophys J; 2014 Nov; 107(9):2141-50. PubMed ID: 25418099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling studies of chromatin fiber structure as a function of DNA linker length.
    Perišić O; Collepardo-Guevara R; Schlick T
    J Mol Biol; 2010 Nov; 403(5):777-802. PubMed ID: 20709077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic search for compact structures of telomeric nucleosomes.
    Besker N; Anselmi C; Paparcone R; Scipioni A; Savino M; De Santis P
    FEBS Lett; 2003 Nov; 554(3):369-72. PubMed ID: 14623096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological polymorphism of the two-start chromatin fiber.
    Norouzi D; Zhurkin VB
    Biophys J; 2015 May; 108(10):2591-2600. PubMed ID: 25992737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical role for linker DNA in higher-order folding of chromatin fibers.
    Brouwer T; Pham C; Kaczmarczyk A; de Voogd WJ; Botto M; Vizjak P; Mueller-Planitz F; van Noort J
    Nucleic Acids Res; 2021 Mar; 49(5):2537-2551. PubMed ID: 33589918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray structure of a tetranucleosome and its implications for the chromatin fibre.
    Schalch T; Duda S; Sargent DF; Richmond TJ
    Nature; 2005 Jul; 436(7047):138-41. PubMed ID: 16001076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation.
    Kepper N; Foethke D; Stehr R; Wedemann G; Rippe K
    Biophys J; 2008 Oct; 95(8):3692-705. PubMed ID: 18212006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.
    Perišić O; Schlick T
    J Phys Chem B; 2017 Aug; 121(33):7823-7832. PubMed ID: 28732449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.
    Song F; Chen P; Sun D; Wang M; Dong L; Liang D; Xu RM; Zhu P; Li G
    Science; 2014 Apr; 344(6182):376-80. PubMed ID: 24763583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure.
    Robinson PJ; Fairall L; Huynh VA; Rhodes D
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6506-11. PubMed ID: 16617109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin fibers stabilize nucleosomes under torsional stress.
    Kaczmarczyk A; Meng H; Ordu O; Noort JV; Dekker NH
    Nat Commun; 2020 Jan; 11(1):126. PubMed ID: 31913285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking Chromatin Fibers to Gene Folding by Hierarchical Looping.
    Bascom G; Schlick T
    Biophys J; 2017 Feb; 112(3):434-445. PubMed ID: 28153411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleosome interactions in chromatin: fiber stiffening and hairpin formation.
    Mergell B; Everaers R; Schiessel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011915. PubMed ID: 15324096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kilobase Pair Chromatin Fiber Contacts Promoted by Living-System-Like DNA Linker Length Distributions and Nucleosome Depletion.
    Bascom GD; Kim T; Schlick T
    J Phys Chem B; 2017 Apr; 121(15):3882-3894. PubMed ID: 28299939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological constraints on the possible structures of the 30 nm chromatin fibre.
    Staynov DZ; Proykova YG
    Chromosoma; 2008 Feb; 117(1):67-76. PubMed ID: 17934746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of chromatin folding by conformational variations of nucleosome linker DNA.
    Buckwalter JM; Norouzi D; Harutyunyan A; Zhurkin VB; Grigoryev SA
    Nucleic Acids Res; 2017 Sep; 45(16):9372-9387. PubMed ID: 28934465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing Structural Heterogeneity in Chromatin Fibers.
    Ekundayo B; Richmond TJ; Schalch T
    J Mol Biol; 2017 Oct; 429(20):3031-3042. PubMed ID: 28893533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes.
    Grigoryev SA; Bascom G; Buckwalter JM; Schubert MB; Woodcock CL; Schlick T
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1238-43. PubMed ID: 26787893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.