These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21156136)

  • 41. Role of nucleosome positioning in 3D chromatin organization and loop formation.
    Kharerin H; Bhat PJ; Padinhateeri R
    J Biosci; 2020; 45():. PubMed ID: 31965992
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational modeling of the chromatin fiber.
    Langowski J; Heermann DW
    Semin Cell Dev Biol; 2007 Oct; 18(5):659-67. PubMed ID: 17936653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of internucleosomal interaction on folding of the chromatin fiber.
    Stehr R; Kepper N; Rippe K; Wedemann G
    Biophys J; 2008 Oct; 95(8):3677-91. PubMed ID: 18658212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.
    Williams SP; Langmore JP
    Biophys J; 1991 Mar; 59(3):606-18. PubMed ID: 2049522
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nucleosome conformational flexibility and implications for chromatin dynamics.
    Sivolob A; Prunell A
    Philos Trans A Math Phys Eng Sci; 2004 Jul; 362(1820):1519-47. PubMed ID: 15306464
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chromatin: a tunable spring at work inside chromosomes.
    Ben-Haïm E; Lesne A; Victor JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051921. PubMed ID: 11735982
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effect of the length of internucleosome regions of DNA on the conformation of chromatid fibrils].
    Kishchenko GP; Gruzdev AD; Eremenko SI
    Biofizika; 1986; 31(3):399-403. PubMed ID: 3719012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Correlation among DNA Linker Length, Linker Histone Concentration, and Histone Tails in Chromatin.
    Luque A; Ozer G; Schlick T
    Biophys J; 2016 Jun; 110(11):2309-2319. PubMed ID: 27276249
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Linker DNA Length is a Key to Tri-nucleosome Folding.
    Kenzaki H; Takada S
    J Mol Biol; 2021 Mar; 433(6):166792. PubMed ID: 33383034
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling and DNA topology of compact 2-start and 1-start chromatin fibres.
    Wu C; Travers A
    Nucleic Acids Res; 2019 Oct; 47(18):9902-9924. PubMed ID: 31219588
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms for nucleosome mobilization.
    Flaus A; Owen-Hughes T
    Biopolymers; 2003 Apr; 68(4):563-78. PubMed ID: 12666181
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biophysics of Chromatin Dynamics.
    Fierz B; Poirier MG
    Annu Rev Biophys; 2019 May; 48():321-345. PubMed ID: 30883217
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermodynamics of DNA loops with long-range correlated structural disorder.
    Vaillant C; Audit B; Arnéodo A
    Phys Rev Lett; 2005 Aug; 95(6):068101. PubMed ID: 16090995
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A chromatin folding model that incorporates linker variability generates fibers resembling the native structures.
    Woodcock CL; Grigoryev SA; Horowitz RA; Whitaker N
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9021-5. PubMed ID: 8415647
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nucleosome gaping supports a functional structure for the 30nm chromatin fiber.
    Mozziconacci J; Victor JM
    J Struct Biol; 2003 Jul; 143(1):72-6. PubMed ID: 12892727
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Twist propagation in dinucleosome arrays.
    Dobrovolskaia IV; Kenward M; Arya G
    Biophys J; 2010 Nov; 99(10):3355-64. PubMed ID: 21081084
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Topological diversity of chromatin fibers: Interplay between nucleosome repeat length, DNA linking number and the level of transcription.
    Norouzi D; Katebi A; Cui F; Zhurkin VB
    AIMS Biophys; 2015; 2(4):613-629. PubMed ID: 28133628
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Theoretical models of possible compact nucleosome structures.
    Besker N; Anselmi C; De Santis P
    Biophys Chem; 2005 Apr; 115(2-3):139-43. PubMed ID: 15752596
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromatosome Structure and Dynamics from Molecular Simulations.
    Öztürk MA; De M; Cojocaru V; Wade RC
    Annu Rev Phys Chem; 2020 Apr; 71():101-119. PubMed ID: 32017651
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Salt-modulated structure of polyelectrolyte-macroion complex fibers.
    Boroudjerdi H; Naji A; Netz RR
    Eur Phys J E Soft Matter; 2011 Jul; 34(7):72. PubMed ID: 21792745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.