These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21156173)

  • 1. Regulation of Candida glabrata oxidative stress resistance is adapted to host environment.
    Roetzer A; Klopf E; Gratz N; Marcet-Houben M; Hiller E; Rupp S; Gabaldón T; Kovarik P; Schüller C
    FEBS Lett; 2011 Jan; 585(2):319-27. PubMed ID: 21156173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata.
    Briones-Martin-Del-Campo M; Orta-Zavalza E; Juarez-Cepeda J; Gutierrez-Escobedo G; Cañas-Villamar I; Castaño I; De Las Peñas A
    Rev Iberoam Micol; 2014; 31(1):67-71. PubMed ID: 24270068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p.
    Cuéllar-Cruz M; Briones-Martin-del-Campo M; Cañas-Villamar I; Montalvo-Arredondo J; Riego-Ruiz L; Castaño I; De Las Peñas A
    Eukaryot Cell; 2008 May; 7(5):814-25. PubMed ID: 18375620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new regulator in the crossroads of oxidative stress resistance and virulence in
    Pais P; Vagueiro S; Mil-Homens D; Pimenta AI; Viana R; Okamoto M; Chibana H; Fialho AM; Teixeira MC
    Virulence; 2020 Dec; 11(1):1522-1538. PubMed ID: 33135521
    [No Abstract]   [Full Text] [Related]  

  • 5. Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages.
    Seider K; Gerwien F; Kasper L; Allert S; Brunke S; Jablonowski N; Schwarzmüller T; Barz D; Rupp S; Kuchler K; Hube B
    Eukaryot Cell; 2014 Jan; 13(1):170-83. PubMed ID: 24363366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The EPA2 adhesin encoding gene is responsive to oxidative stress in the opportunistic fungal pathogen Candida glabrata.
    Juárez-Cepeda J; Orta-Zavalza E; Cañas-Villamar I; Arreola-Gómez J; Pérez-Cornejo GP; Hernández-Carballo CY; Gutiérrez-Escobedo G; Castaño I; De Las Peñas A
    Curr Genet; 2015 Nov; 61(4):529-44. PubMed ID: 25586543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The superoxide dismutases of Candida glabrata protect against oxidative damage and are required for lysine biosynthesis, DNA integrity and chronological life survival.
    Briones-Martin-Del-Campo M; Orta-Zavalza E; Cañas-Villamar I; Gutiérrez-Escobedo G; Juárez-Cepeda J; Robledo-Márquez K; Arroyo-Helguera O; Castaño I; De Las Peñas A
    Microbiology (Reading); 2015 Feb; 161(Pt 2):300-310. PubMed ID: 25479837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata.
    Lelandais G; Tanty V; Geneix C; Etchebest C; Jacq C; Devaux F
    Genome Biol; 2008; 9(11):R164. PubMed ID: 19025642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Host-Pathogen Interaction Screen Identifies
    Kounatidis I; Ames L; Mistry R; Ho HL; Haynes K; Ligoxygakis P
    G3 (Bethesda); 2018 May; 8(5):1637-1647. PubMed ID: 29535147
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.
    Nishikawa JL; Boeszoermenyi A; Vale-Silva LA; Torelli R; Posteraro B; Sohn YJ; Ji F; Gelev V; Sanglard D; Sanguinetti M; Sadreyev RI; Mukherjee G; Bhyravabhotla J; Buhrlage SJ; Gray NS; Wagner G; Näär AM; Arthanari H
    Nature; 2016 Feb; 530(7591):485-9. PubMed ID: 26886795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.
    Iosue CL; Attanasio N; Shaik NF; Neal EM; Leone SG; Cali BJ; Peel MT; Grannas AM; Wykoff DD
    PLoS One; 2016; 11(3):e0152042. PubMed ID: 27015653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autophagy supports Candida glabrata survival during phagocytosis.
    Roetzer A; Gratz N; Kovarik P; Schüller C
    Cell Microbiol; 2010 Feb; 12(2):199-216. PubMed ID: 19811500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local silencing controls the oxidative stress response and the multidrug resistance in Candida glabrata.
    Orta-Zavalza E; Guerrero-Serrano G; Gutiérrez-Escobedo G; Cañas-Villamar I; Juárez-Cepeda J; Castaño I; De Las Peñas A
    Mol Microbiol; 2013 Jun; 88(6):1135-48. PubMed ID: 23651300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic analysis reveals global and temporal transcription changes during Candida glabrata adaptation to an oxidative environment.
    Sethiya P; Rai MN; Rai R; Parsania C; Tan K; Wong KH
    Fungal Biol; 2020 May; 124(5):427-439. PubMed ID: 32389305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skn7p is involved in oxidative stress response and virulence of Candida glabrata.
    Saijo T; Miyazaki T; Izumikawa K; Mihara T; Takazono T; Kosai K; Imamura Y; Seki M; Kakeya H; Yamamoto Y; Yanagihara K; Kohno S
    Mycopathologia; 2010 Feb; 169(2):81-90. PubMed ID: 19693686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonic anhydrase regulation and CO(2) sensing in the fungal pathogen Candida glabrata involves a novel Rca1p ortholog.
    Cottier F; Leewattanapasuk W; Kemp LR; Murphy M; Supuran CT; Kurzai O; Mühlschlegel FA
    Bioorg Med Chem; 2013 Mar; 21(6):1549-54. PubMed ID: 22727373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Saccharomyces cerevisiae to Candida glabratain a few easy steps: important adaptations for an opportunistic pathogen.
    Roetzer A; Gabaldón T; Schüller C
    FEMS Microbiol Lett; 2011 Jan; 314(1):1-9. PubMed ID: 20846362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
    Gerwien F; Safyan A; Wisgott S; Hille F; Kaemmer P; Linde J; Brunke S; Kasper L; Hube B
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress response in Candida glabrata: pieces of a fragmented picture.
    Jandric Z; Schüller C
    Future Microbiol; 2011 Dec; 6(12):1475-84. PubMed ID: 22122443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata.
    Bernardo RT; Cunha DV; Wang C; Pereira L; Silva S; Salazar SB; Schröder MS; Okamoto M; Takahashi-Nakaguchi A; Chibana H; Aoyama T; Sá-Correia I; Azeredo J; Butler G; Mira NP
    G3 (Bethesda); 2017 Jan; 7(1):1-18. PubMed ID: 27815348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.