BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21156316)

  • 1. Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria.
    Holstein JH; Becker SC; Fiedler M; Garcia P; Histing T; Klein M; Laschke MW; Corsten M; Pohlemann T; Menger MD
    Injury; 2011 Aug; 42(8):765-71. PubMed ID: 21156316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise enhances angiogenesis during bone defect healing in mice.
    Holstein JH; Becker SC; Fiedler M; Scheuer C; Garcia P; Histing T; Klein M; Pohlemann T; Menger MD
    J Orthop Res; 2011 Jul; 29(7):1086-92. PubMed ID: 21259340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects.
    Geiger F; Bertram H; Berger I; Lorenz H; Wall O; Eckhardt C; Simank HG; Richter W
    J Bone Miner Res; 2005 Nov; 20(11):2028-35. PubMed ID: 16234976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calvaria bone chamber--a new model for intravital assessment of osseous angiogenesis.
    Sinikovic B; Schumann P; Winkler M; Kuestermeyer J; Tavassol F; von See C; Carvalho C; Mülhaupt R; Bormann KH; Kokemueller H; Meyer-Lindenberg A; Laschke MW; Menger MD; Gellrich NC; Rücker M
    J Biomed Mater Res A; 2011 Nov; 99(2):151-7. PubMed ID: 21976439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VEGF modulates angiogenesis and osteogenesis in shockwave-promoted fracture healing in rabbits.
    Wang CJ; Huang KE; Sun YC; Yang YJ; Ko JY; Weng LH; Wang FS
    J Surg Res; 2011 Nov; 171(1):114-9. PubMed ID: 20452608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential changes in vessel formation and micro-vascular function during bone repair.
    Hansen-Algenstaedt N; Joscheck C; Wolfram L; Schaefer C; Müller I; Böttcher A; Deuretzbacher G; Wiesner L; Leunig M; Algenstaedt P; Rüther W
    Acta Orthop; 2006 Jun; 77(3):429-39. PubMed ID: 16819682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid bioregulatory model of angiogenesis during bone fracture healing.
    Peiffer V; Gerisch A; Vandepitte D; Van Oosterwyck H; Geris L
    Biomech Model Mechanobiol; 2011 Jun; 10(3):383-95. PubMed ID: 20827500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues.
    Tarkka T; Sipola A; Jämsä T; Soini Y; Ylä-Herttuala S; Tuukkanen J; Hautala T
    J Gene Med; 2003 Jul; 5(7):560-6. PubMed ID: 12825195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture-healing model in the rat.
    Oni OO
    J Orthop Res; 1999 Jan; 17(1):149-50. PubMed ID: 10073659
    [No Abstract]   [Full Text] [Related]  

  • 10. Tissue engineering approaches for bone repair: concepts and evidence.
    Schroeder JE; Mosheiff R
    Injury; 2011 Jun; 42(6):609-13. PubMed ID: 21489529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formononetin promotes early fracture healing through stimulating angiogenesis by up-regulating VEGFR-2/Flk-1 in a rat fracture model.
    Huh JE; Kwon NH; Baek YH; Lee JD; Choi DY; Jingushi S; Kim KI; Park DS
    Int Immunopharmacol; 2009 Nov; 9(12):1357-65. PubMed ID: 19695348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of blood vessel formation between standard and delayed bone healing.
    Lienau J; Schmidt-Bleek K; Peters A; Haschke F; Duda GN; Perka C; Bail HJ; Schütze N; Jakob F; Schell H
    J Orthop Res; 2009 Sep; 27(9):1133-40. PubMed ID: 19274756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The vascular supply to bone in distraction osteoneogenesis: an experimental study.
    Mosheiff R; Cordey J; Rahn BA; Perren SM; Stein H
    J Bone Joint Surg Br; 1996 May; 78(3):497-8. PubMed ID: 8636197
    [No Abstract]   [Full Text] [Related]  

  • 14. The temporal and spatial development of vascularity in a healing displaced fracture.
    Yuasa M; Mignemi NA; Barnett JV; Cates JM; Nyman JS; Okawa A; Yoshii T; Schwartz HS; Stutz CM; Schoenecker JG
    Bone; 2014 Oct; 67():208-21. PubMed ID: 25016962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can we enhance fracture vascularity: What is the evidence?
    Pountos I; Panteli M; Panagiotopoulos E; Jones E; Giannoudis PV
    Injury; 2014 Jun; 45 Suppl 2():S49-57. PubMed ID: 24857029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice.
    Kosaki N; Takaishi H; Kamekura S; Kimura T; Okada Y; Minqi L; Amizuka N; Chung UI; Nakamura K; Kawaguchi H; Toyama Y; D'Armiento J
    Biochem Biophys Res Commun; 2007 Mar; 354(4):846-51. PubMed ID: 17275784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects.
    Koob S; Torio-Padron N; Stark GB; Hannig C; Stankovic Z; Finkenzeller G
    Tissue Eng Part A; 2011 Feb; 17(3-4):311-21. PubMed ID: 20799886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femur window--a new approach to microcirculation of living bone in situ.
    Hansen-Algenstaedt N; Schaefer C; Wolfram L; Joscheck C; Schroeder M; Algenstaedt P; Rüther W
    J Orthop Res; 2005 Sep; 23(5):1073-82. PubMed ID: 15890486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclooxygenase-2 activity is important in craniofacial fracture repair.
    Chikazu D; Fujikawa Y; Fujihara H; Suenaga H; Saijo H; Ohkubo K; Ogasawara T; Mori Y; Iino M; Takato T
    Int J Oral Maxillofac Surg; 2011 Mar; 40(3):322-6. PubMed ID: 21081265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model.
    Hou R; Chen F; Yang Y; Cheng X; Gao Z; Yang HO; Wu W; Mao T
    J Biomed Mater Res A; 2007 Jan; 80(1):85-93. PubMed ID: 16960828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.