These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 21156360)
1. Numerical study of a simple transcranial focused ultrasound system applied to blood-brain barrier opening. Deffieux T; Konofagou EE IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2637-53. PubMed ID: 21156360 [TBL] [Abstract][Full Text] [Related]
2. FEASIBILITY STUDY OF A CLINICAL BLOOD-BRAIN BARRIER OPENING ULTRASOUND SYSTEM. Marquet F; Tung YS; Konofagou EE Nano Life; 2010 Sep; 1(3n04):309. PubMed ID: 24860623 [TBL] [Abstract][Full Text] [Related]
3. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. Mueller JK; Ai L; Bansal P; Legon W J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075 [TBL] [Abstract][Full Text] [Related]
4. Feasibility of ultrasound-induced blood-brain barrier disruption with a single-element transducer under three different frequencies in two non-human primates in vivo: Case report. Zhou H; Liu Y; Long X; Qiao Y; Lee J; Peng H; Liu X; Zou C; Zheng H J Neurosci Methods; 2022 Jan; 365():109383. PubMed ID: 34634283 [TBL] [Abstract][Full Text] [Related]
5. The effects of image homogenisation on simulated transcranial ultrasound propagation. Robertson J; Urban J; Stitzel J; Treeby BE Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047 [TBL] [Abstract][Full Text] [Related]
6. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation. Chen M; Peng C; Wu H; Huang CC; Kim T; Traylor Z; Muller M; Chhatbar PY; Nam CS; Feng W; Jiang X Med Phys; 2023 Jan; 50(1):38-49. PubMed ID: 36342303 [TBL] [Abstract][Full Text] [Related]
7. Real-time, transcranial monitoring of safe blood-brain barrier opening in non-human primates. Marquet F; Teichert T; Wu SY; Tung YS; Downs M; Wang S; Chen C; Ferrera V; Konofagou EE PLoS One; 2014; 9(2):e84310. PubMed ID: 24505248 [TBL] [Abstract][Full Text] [Related]
8. Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening. Kamimura HA; Wang S; Wu SY; Karakatsani ME; Acosta C; Carneiro AA; Konofagou EE Phys Med Biol; 2015 Oct; 60(19):7695-712. PubMed ID: 26394091 [TBL] [Abstract][Full Text] [Related]
9. A PVDF receiver for ultrasound monitoring of transcranial focused ultrasound therapy. O'Reilly MA; Hynynen K IEEE Trans Biomed Eng; 2010 Sep; 57(9):2286-94. PubMed ID: 20515709 [TBL] [Abstract][Full Text] [Related]
10. Standing-wave suppression for transcranial ultrasound by random modulation. Tang SC; Clement GT IEEE Trans Biomed Eng; 2010 Jan; 57(1):203-5. PubMed ID: 19695991 [TBL] [Abstract][Full Text] [Related]
11. A Clinical System for Non-invasive Blood-Brain Barrier Opening Using a Neuronavigation-Guided Single-Element Focused Ultrasound Transducer. Pouliopoulos AN; Wu SY; Burgess MT; Karakatsani ME; Kamimura HAS; Konofagou EE Ultrasound Med Biol; 2020 Jan; 46(1):73-89. PubMed ID: 31668690 [TBL] [Abstract][Full Text] [Related]
12. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study. Jones RM; O'Reilly MA; Hynynen K Phys Med Biol; 2013 Jul; 58(14):4981-5005. PubMed ID: 23807573 [TBL] [Abstract][Full Text] [Related]
13. MRI-guided disruption of the blood-brain barrier using transcranial focused ultrasound in a rat model. O'Reilly MA; Waspe AC; Chopra R; Hynynen K J Vis Exp; 2012 Mar; (61):. PubMed ID: 22433937 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of Hologram-Assisted Bilateral Blood-Brain Barrier Opening in Non-Human Primates. Jimenez-Gambin S; Bae S; Ji R; Tsitsos F; Konofagou EE IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Oct; 71(10):1172-1185. PubMed ID: 39196737 [TBL] [Abstract][Full Text] [Related]
15. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study. Song J; Pulkkinen A; Huang Y; Hynynen K IEEE Trans Biomed Eng; 2012 Feb; 59(2):435-44. PubMed ID: 22049360 [TBL] [Abstract][Full Text] [Related]
16. Acoustic properties across the human skull. Riis TS; Webb TD; Kubanek J Ultrasonics; 2022 Feb; 119():106591. PubMed ID: 34717144 [TBL] [Abstract][Full Text] [Related]
17. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler. Errico C; Osmanski BF; Pezet S; Couture O; Lenkei Z; Tanter M Neuroimage; 2016 Jan; 124(Pt A):752-761. PubMed ID: 26416649 [TBL] [Abstract][Full Text] [Related]
18. Establishing sheep as an experimental species to validate ultrasound-mediated blood-brain barrier opening for potential therapeutic interventions. Pelekanos M; Leinenga G; Odabaee M; Odabaee M; Saifzadeh S; Steck R; Götz J Theranostics; 2018; 8(9):2583-2602. PubMed ID: 29721100 [No Abstract] [Full Text] [Related]
19. Characterization of ultrasound propagation through ex-vivo human temporal bone. Ammi AY; Mast TD; Huang IH; Abruzzo TA; Coussios CC; Shaw GJ; Holland CK Ultrasound Med Biol; 2008 Oct; 34(10):1578-89. PubMed ID: 18456391 [TBL] [Abstract][Full Text] [Related]
20. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array. O'Reilly MA; Jones RM; Birman G; Hynynen K Med Phys; 2016 Sep; 43(9):5063. PubMed ID: 27587036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]