These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21156381)

  • 1. Plate mode propagation losses in solidly mounted resonators.
    Thalmayr F; Hashimoto KY; Omori T; Yamaguchi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2844-9. PubMed ID: 21156381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modelling of nanostructured piezoelectric resonators (NAPIERs).
    Southin JE; Whatmore RW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):654-62. PubMed ID: 15244278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized reflector stacks for solidly mounted bulk acoustic wave resonators.
    Jose S; Jansman AB; Hueting RJ; Schmitz J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2753-63. PubMed ID: 21156371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion and mirror transmission characteristics of bulk acoustic wave resonators.
    Kokkonen K; Pensala T; Kaivola M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):215-25. PubMed ID: 21244989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and bulk acoustic wave properties on the dual mode frequency shift of solidly mounted resonators.
    Chung CJ; Chen YC; Cheng CC; Kao KS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):857-64. PubMed ID: 18467230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of acoustic substrate losses in 1850-MHz thin film BAW resonators.
    Pensala T; Thalhammer R; Dekker J; Kaitila J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2544-52. PubMed ID: 19942540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation.
    Qin L; Chen Q; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1840-53. PubMed ID: 20679013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of thickness-extensional waves propagating in the lateral direction of solidly mounted piezoelectric thin film resonators.
    Nakamura K; Sato S; Ohta S; Yamada K; Doi A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Apr; 52(4):604-9. PubMed ID: 16060509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spurious resonance suppression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment.
    Pensala T; Ylilammi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1731-44. PubMed ID: 19686989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified mason model for bulk acoustic wave resonators.
    Jamneala T; Bradley P; Koelle UB; Chien A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2025-9. PubMed ID: 18986898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric study of laterally acoustically coupled bulk acoustic wave filters.
    Meltaus J; Pensala T; Kokkonen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2742-51. PubMed ID: 23221223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene as an active virtually massless top electrode for RF solidly mounted bulk acoustic wave (SMR-BAW) resonators.
    Knapp M; Hoffmann R; Lebedev V; Cimalla V; Ambacher O
    Nanotechnology; 2018 Mar; 29(10):105302. PubMed ID: 29320371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of bulk acoustic wave devices built on piezoelectric stack structures: impedance matrix analysis and network representation.
    Zhang VY; Dubus B; Lefebvre JE; Gryba T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):704-16. PubMed ID: 18407860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opportunities for shear energy scaling in bulk acoustic wave resonators.
    Jose S; Hueting RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1720-8. PubMed ID: 25265180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the shear acoustic velocities in the different materials composing a high frequency solidly mounted resonator.
    DeMiguel-Ramos M; Mirea T; Olivares J; Clement M; Sangrador J; Iborra E
    Ultrasonics; 2015 Sep; 62():195-9. PubMed ID: 26081919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spurious Modes in Laterally Excited Bulk Acoustic Resonators (XBARs): Analysis and Suppression.
    Naumenko NF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Jun; 70(6):569-576. PubMed ID: 37028317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation properties of longitudinal leaky surface waves on lithium tetraborate.
    Sato T; Abe H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):136-51. PubMed ID: 18244165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of spurious lateral modes in thickness-excited FBAR resonators.
    Rosén D; Bjurström J; Katardjiev I
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1189-92. PubMed ID: 16212259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonator filters using shear horizontal-type leaky surface acoustic wave consisting of heavy-metal electrode and quartz substrate.
    Kadota M; Yoneda T; Fujimoto K; Nakao T; Takata E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):202-10. PubMed ID: 15055810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.