These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21156984)

  • 1. Reinforcement learning: a novel method for optimal control of propofol-induced hypnosis.
    Moore BL; Doufas AG; Pyeatt LD
    Anesth Analg; 2011 Feb; 112(2):360-7. PubMed ID: 21156984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement learning versus proportional-integral-derivative control of hypnosis in a simulated intraoperative patient.
    Moore BL; Quasny TM; Doufas AG
    Anesth Analg; 2011 Feb; 112(2):350-9. PubMed ID: 21156973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A randomized controlled trial demonstrates that a novel closed-loop propofol system performs better hypnosis control than manual administration.
    Hemmerling TM; Charabati S; Zaouter C; Minardi C; Mathieu PA
    Can J Anaesth; 2010 Aug; 57(8):725-35. PubMed ID: 20533013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable time-delay estimation for anesthesia control during intensive care.
    Ionescu CM; Hodrea R; De Keyser R
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):363-9. PubMed ID: 20959260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuzzy control for closed-loop, patient-specific hypnosis in intraoperative patients: a simulation study.
    Moore BL; Pyeatt LD; Doufas AG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3083-6. PubMed ID: 19963562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seeing the future of anesthesia drug dosing: moving the art of anesthesia from impressionism to realism.
    Kennedy RR
    Anesth Analg; 2010 Aug; 111(2):252-5. PubMed ID: 20664084
    [No Abstract]   [Full Text] [Related]  

  • 7. Improving the anesthetic process by a fuzzy rule based medical decision system.
    Mendez JA; Leon A; Marrero A; Gonzalez-Cava JM; Reboso JA; Estevez JI; Gomez-Gonzalez JF
    Artif Intell Med; 2018 Jan; 84():159-170. PubMed ID: 29310966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical pharmacology on display.
    Gin T
    Anesth Analg; 2010 Aug; 111(2):256-8. PubMed ID: 20664085
    [No Abstract]   [Full Text] [Related]  

  • 9. Impact of a preoperative conversational hypnotic session on propofol consumption using closed-loop anesthetic induction guided by the bispectral index: A randomized controlled trial.
    Bataille A; Besset S; Szekely B; Michel-Cherqui M; Dumans V; Liu N; Chazot T; Fischler M; Le Guen M
    Medicine (Baltimore); 2017 May; 96(19):e6389. PubMed ID: 28489735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal adaptive control of drug dosing using integral reinforcement learning.
    Padmanabhan R; Meskin N; Haddad WM
    Math Biosci; 2019 Mar; 309():131-142. PubMed ID: 30735696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propofol and children--what we know and what we do not know.
    Rigby-Jones AE; Sneyd JR
    Paediatr Anaesth; 2011 Mar; 21(3):247-54. PubMed ID: 21083787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The accuracy and clinical feasibility of a new bayesian-based closed-loop control system for propofol administration using the bispectral index as a controlled variable.
    De Smet T; Struys MM; Neckebroek MM; Van den Hauwe K; Bonte S; Mortier EP
    Anesth Analg; 2008 Oct; 107(4):1200-10. PubMed ID: 18806028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of depth of hypnosis on immediate postoperative cognitive function: A randomised trial.
    Ziegeler S; Buchinger H; Bialas P; Grundmann U; Diehl M; Soltész S; Kreuer S
    Eur J Anaesthesiol; 2013 Oct; 30(10):641-2. PubMed ID: 23549121
    [No Abstract]   [Full Text] [Related]  

  • 14. Control Law Design for Propofol Infusion to Regulate Depth of Hypnosis: A Nonlinear Control Strategy.
    Khaqan A; Bilal M; Ilyas M; Ijaz B; Ali Riaz R
    Comput Math Methods Med; 2015; 2015():1810303. PubMed ID: 27293475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propofol and remifentanil effect-site concentrations estimated by pharmacokinetic simulation and bispectral index monitoring during craniotomy with intraoperative awakening for brain tumor resection.
    Lobo F; Beiras A
    J Neurosurg Anesthesiol; 2007 Jul; 19(3):183-9. PubMed ID: 17592350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust predictive control strategy applied for propofol dosing using BIS as a controlled variable during anesthesia.
    Ionescu CM; De Keyser R; Torrico BC; De Smet T; Struys MM; Normey-Rico JE
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2161-70. PubMed ID: 18713685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overview of total intravenous anesthesia in children.
    Mani V; Morton NS
    Paediatr Anaesth; 2010 Mar; 20(3):211-22. PubMed ID: 19694975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presenting data versus predictions as basic scientific information: target-controlled infusions versus microgram per kilogram per minutes.
    Kempen PM
    Anesthesiology; 2011 Mar; 114(3):721; author reply 721-3. PubMed ID: 21343733
    [No Abstract]   [Full Text] [Related]  

  • 19. Performance of the cerebral state index during increasing levels of propofol anesthesia: a comparison with the bispectral index.
    Cortínez LI; Delfino AE; Fuentes R; Muñoz HR
    Anesth Analg; 2007 Mar; 104(3):605-10. PubMed ID: 17312217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monotonicity of approximate entropy during transition from awareness to unresponsiveness due to propofol anesthetic induction.
    Koskinen M; Seppänen T; Tong S; Mustola S; Thakor NV
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):669-75. PubMed ID: 16602573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.