BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21157513)

  • 1. RegB kinase activity is controlled in part by monitoring the ratio of oxidized to reduced ubiquinones in the ubiquinone pool.
    Wu J; Bauer CE
    mBio; 2010 Dec; 1(5):. PubMed ID: 21157513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB.
    Swem LR; Gong X; Yu CA; Bauer CE
    J Biol Chem; 2006 Mar; 281(10):6768-75. PubMed ID: 16407278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RegB/RegA, a global redox-responding two-component system.
    Wu J; Bauer CE
    Adv Exp Med Biol; 2008; 631():131-48. PubMed ID: 18792686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid.
    Wu J; Cheng Z; Reddie K; Carroll K; Hammad LA; Karty JA; Bauer CE
    J Biol Chem; 2013 Feb; 288(7):4755-62. PubMed ID: 23306201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinase activity of ArcB from Escherichia coli is subject to regulation by both ubiquinone and demethylmenaquinone.
    Sharma P; Stagge S; Bekker M; Bettenbrock K; Hellingwerf KJ
    PLoS One; 2013; 8(10):e75412. PubMed ID: 24116043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool.
    Bekker M; Alexeeva S; Laan W; Sawers G; Teixeira de Mattos J; Hellingwerf K
    J Bacteriol; 2010 Feb; 192(3):746-54. PubMed ID: 19933363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RegB/RegA, a highly conserved redox-responding global two-component regulatory system.
    Elsen S; Swem LR; Swem DL; Bauer CE
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):263-79. PubMed ID: 15187184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal transduction by the global regulator RegB is mediated by a redox-active cysteine.
    Swem LR; Kraft BJ; Swem DL; Setterdahl AT; Masuda S; Knaff DB; Zaleski JM; Bauer CE
    EMBO J; 2003 Sep; 22(18):4699-708. PubMed ID: 12970182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus.
    Inoue K; Kouadio JL; Mosley CS; Bauer CE
    Biochemistry; 1995 Jan; 34(2):391-6. PubMed ID: 7819230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression, purification and characterisation of full-length histidine protein kinase RegB from Rhodobacter sphaeroides.
    Potter CA; Ward A; Laguri C; Williamson MP; Henderson PJ; Phillips-Jones MK
    J Mol Biol; 2002 Jul; 320(2):201-13. PubMed ID: 12079379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ubiquinone and menaquinone electron carriers represent the yin and yang in the redox regulation of the ArcB sensor kinase.
    Alvarez AF; Rodriguez C; Georgellis D
    J Bacteriol; 2013 Jul; 195(13):3054-61. PubMed ID: 23645604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and assays of Rhodobacter capsulatus RegB-RegA two-component signal transduction system.
    Swem LR; Swem DL; Wu J; Bauer CE
    Methods Enzymol; 2007; 422():171-83. PubMed ID: 17628139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of the DNA sequence of the regB gene of Rhodobacter capsulatus with implications for the membrane topology of the sensor kinase regB.
    Chen W; Jäger A; Klug G
    J Bacteriol; 2000 Feb; 182(3):818-20. PubMed ID: 10633119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-state dynamics of ubiquinone-10 imply cooperative regulation of photosynthetic membrane expression in Rhodospirillum rubrum.
    Grammel H; Ghosh R
    J Bacteriol; 2008 Jul; 190(14):4912-21. PubMed ID: 18487324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans, and Rhodobacter capsulatus.
    Masuda S; Matsumoto Y; Nagashima KV; Shimada K; Inoue K; Bauer CE; Matsuura K
    J Bacteriol; 1999 Jul; 181(14):4205-15. PubMed ID: 10400577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I.
    Fedor JG; Jones AJY; Di Luca A; Kaila VRI; Hirst J
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12737-12742. PubMed ID: 29133414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bacteriophage T4 regB ribonuclease. Stimulation of the purified enzyme by ribosomal protein S1.
    Ruckman J; Ringquist S; Brody E; Gold L
    J Biol Chem; 1994 Oct; 269(43):26655-62. PubMed ID: 7929399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex.
    Barz WP; Verméglio A; Francia F; Venturoli G; Melandri BA; Oesterhelt D
    Biochemistry; 1995 Nov; 34(46):15248-58. PubMed ID: 7578140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of a bound ubiquinone on reactions of the Escherichia coli cytochrome bo with ubiquinol and dioxygen.
    Mogi T; Sato-Watanabe M; Miyoshi H; Orii Y
    FEBS Lett; 1999 Aug; 457(2):223-6. PubMed ID: 10471783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quinone-binding sites of the cytochrome bo3 ubiquinol oxidase from Escherichia coli.
    Yap LL; Lin MT; Ouyang H; Samoilova RI; Dikanov SA; Gennis RB
    Biochim Biophys Acta; 2010 Dec; 1797(12):1924-32. PubMed ID: 20416270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.