BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21157513)

  • 21. Heme-copper terminal oxidase using both cytochrome c and ubiquinol as electron donors.
    Gao Y; Meyer B; Sokolova L; Zwicker K; Karas M; Brutschy B; Peng G; Michel H
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3275-80. PubMed ID: 22334648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Demonstration of a collisional interaction of ubiquinol with the ubiquinol-cytochrome c2 oxidoreductase complex in chromatophores from Rhodobacter sphaeroides.
    Venturoli G; Fernández-Velasco JG; Crofts AR; Melandri BA
    Biochim Biophys Acta; 1986 Oct; 851(3):340-52. PubMed ID: 3019393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification of the 45 kDa, membrane bound NADH dehydrogenase of Escherichia coli (NDH-2) and analysis of its interaction with ubiquinone analogues.
    Björklöf K; Zickermann V; Finel M
    FEBS Lett; 2000 Feb; 467(1):105-10. PubMed ID: 10664466
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mitochondrial outer membrane protein mitoNEET is a redox enzyme catalyzing electron transfer from FMNH
    Wang Y; Landry AP; Ding H
    J Biol Chem; 2017 Jun; 292(24):10061-10067. PubMed ID: 28461337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of a conserved tyrosine in the 49-kDa subunit of complex I for ubiquinone binding and reduction.
    Tocilescu MA; Fendel U; Zwicker K; Dröse S; Kerscher S; Brandt U
    Biochim Biophys Acta; 2010; 1797(6-7):625-32. PubMed ID: 20117074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ubiquinol oxidation in the cytochrome bc1 complex: reaction mechanism and prevention of short-circuiting.
    Mulkidjanian AY
    Biochim Biophys Acta; 2005 Aug; 1709(1):5-34. PubMed ID: 16005845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. THE ROLE OF THE QUINONE POOL IN THE CYCLIC ELECTRON-TRANSFER CHAIN OF RHODOPSEUDOMONAS SPHAEROIDES: A MODIFIED Q-CYCLE MECHANISM.
    Crofts AR; Meinhardt SW; Jones KR; Snozzi M
    Biochim Biophys Acta; 1983 May; 723(2):202-218. PubMed ID: 21494412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutagenesis of three conserved Glu residues in a bacterial homologue of the ND1 subunit of complex I affects ubiquinone reduction kinetics but not inhibition by dicyclohexylcarbodiimide.
    Kurki S; Zickermann V; Kervinen M; Hassinen I; Finel M
    Biochemistry; 2000 Nov; 39(44):13496-502. PubMed ID: 11063586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytochrome b558 monitors the steady state redox state of the ubiquinone pool in the aerobic respiratory chain of Escherichia coli.
    Lorence RM; Carter K; Green GN; Gennis RB
    J Biol Chem; 1987 Aug; 262(22):10532-6. PubMed ID: 3301837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recombinant RquA catalyzes the in vivo conversion of ubiquinone to rhodoquinone in Escherichia coli and Saccharomyces cerevisiae.
    Bernert AC; Jacobs EJ; Reinl SR; Choi CCY; Roberts Buceta PM; Culver JC; Goodspeed CR; Bradley MC; Clarke CF; Basset GJ; Shepherd JN
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Sep; 1864(9):1226-1234. PubMed ID: 31121262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of a bound ubiquinone on reactions of the Escherichia coli cytochrome bo with ubiquinol and dioxygen.
    Mogi T; Sato-Watanabe M; Miyoshi H; Orii Y
    FEBS Lett; 1999 Aug; 457(1):61-4. PubMed ID: 10486564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus.
    Swem LR; Elsen S; Bird TH; Swem DL; Koch HG; Myllykallio H; Daldal F; Bauer CE
    J Mol Biol; 2001 May; 309(1):121-38. PubMed ID: 11491283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and in vitro phosphorylation of HupT, a regulatory protein controlling hydrogenase gene expression in Rhodobacter capsulatus.
    Elsen S; Colbeau A; Vignais PM
    J Bacteriol; 1997 Feb; 179(3):968-71. PubMed ID: 9006058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the ubiquinol-binding site of recombinant Sauromatum guttatum alternative oxidase expressed in E. coli membranes through site-directed mutagenesis.
    Young L; May B; Pendlebury-Watt A; Shearman J; Elliott C; Albury MS; Shiba T; Inaoka DK; Harada S; Kita K; Moore AL
    Biochim Biophys Acta; 2014 Jul; 1837(7):1219-25. PubMed ID: 24530866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a stable ubisemiquinone and characterization of the effects of ubiquinone oxidation-reduction status on the Rieske iron-sulfur protein in the three-subunit ubiquinol-cytochrome c oxidoreductase complex of Paracoccus denitrificans.
    Meinhardt SW; Yang XH; Trumpower BL; Ohnishi T
    J Biol Chem; 1987 Jun; 262(18):8702-6. PubMed ID: 3036822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The quinone-binding site in succinate-ubiquinone reductase from Escherichia coli. Quinone-binding domain and amino acid residues involved in quinone binding.
    Yang X; Yu L; He D; Yu CA
    J Biol Chem; 1998 Nov; 273(48):31916-23. PubMed ID: 9822661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation and inhibition of the receptor histidine kinase AgrC occurs through opposite helical transduction motions.
    Wang B; Zhao A; Novick RP; Muir TW
    Mol Cell; 2014 Mar; 53(6):929-40. PubMed ID: 24656130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of the Q-pool by duroquinol via the two quinone-binding sites of the QH2: cytochrome c oxidoreductase. A model for the equilibrium between cytochrome b-562 and the Q-pool.
    Marres CA; de Vries S
    Biochim Biophys Acta; 1991 Mar; 1057(1):51-63. PubMed ID: 1849003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the cytosolic loop of DsbB in catalytic turnover of the ubiquinone-DsbB complex.
    Takahashi YH; Inaba K; Ito K
    Antioxid Redox Signal; 2006; 8(5-6):743-52. PubMed ID: 16771666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation.
    Brondijk TH; Fiegen D; Richardson DJ; Cole JA
    Mol Microbiol; 2002 Apr; 44(1):245-55. PubMed ID: 11967083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.