These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2115788)

  • 1. The pH dependence of the reconstitution reaction of apotyrosinase: the question of Cu(I) versus Cu(II).
    Wigfield DC; Goltz DM
    Biochem Cell Biol; 1990 Mar; 68(3):648-50. PubMed ID: 2115788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reconstitution reaction of Neurospora apotyrosinase.
    Beltramini M; Lerch K
    Biochem Biophys Res Commun; 1983 Jan; 110(1):313-9. PubMed ID: 6404252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation parameters for the reconstitution of apotyrosinase by copper.
    Wigfield DC; Goltz DM
    Biochem Cell Biol; 1993; 71(1-2):96-8. PubMed ID: 8329182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The existence of apotyrosinase in the cytosol of Harding-Passey mouse melanoma melanocytes and characteristics of enzyme reconstitution by Cu(II).
    Martínez JH; Solano F; Arocas A; García-Borrón JC; Iborra JL; Lozano JA
    Biochim Biophys Acta; 1987 Mar; 923(3):413-20. PubMed ID: 3103692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper transfer between Neurospora copper metallothionein and type 3 copper apoproteins.
    Beltramini M; Lerch K
    FEBS Lett; 1982 Jun; 142(2):219-22. PubMed ID: 6809496
    [No Abstract]   [Full Text] [Related]  

  • 6. Copper transfer and activation of the Streptomyces apotyrosinase are mediated through a complex formation between apotyrosinase and its trans-activator MelC1.
    Chen LY; Leu WM; Wang KT; Lee YH
    J Biol Chem; 1992 Oct; 267(28):20100-7. PubMed ID: 1400328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agaricus bisporus metapotyrosinase: preparation, characterization, and conversion to mixed-metal derivatives of the binuclear site.
    Yong G; Leone C; Strothkamp KG
    Biochemistry; 1990 Oct; 29(41):9684-90. PubMed ID: 2176854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of copper on the tyrosinase of liver pigment cells from Rana esculenta L.
    Cicero R; Gallone A; Maida I; Pintucci G
    Comp Biochem Physiol B; 1990; 96(2):393-7. PubMed ID: 2113847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine beta-monooxygenase. Binding to apoenzyme and rapid exchange in holoenzyme of 64Cu studied with high-performance size-exclusion gel chromatography.
    Skotland T; Flatmark T
    Eur J Biochem; 1983 Apr; 132(1):171-5. PubMed ID: 6840081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pH dependence of apparent binding constants between apo-superoxide dismutase and cupric ions.
    Hirose J; Ohhira T; Hirata H; Kidani Y
    Arch Biochem Biophys; 1982 Oct; 218(1):179-86. PubMed ID: 7149725
    [No Abstract]   [Full Text] [Related]  

  • 11. Histidine residues 102 and 117 of MelC1 play different roles in the chaperone function for Streptomyces apotyrosinase.
    Liaw LL; Lee YH
    Biochem Biophys Res Commun; 1995 Sep; 214(2):447-53. PubMed ID: 7677750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histidine at the active site of Neurospora tyrosinase.
    Pfiffner E; Lerch K
    Biochemistry; 1981 Oct; 20(21):6029-35. PubMed ID: 6458322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational study of Streptomyces tyrosinase trans-activator MelC1. MelC1 is likely a chaperone for apotyrosinase.
    Chen LY; Chen MY; Leu WM; Tsai TY; Lee YH
    J Biol Chem; 1993 Sep; 268(25):18710-6. PubMed ID: 8360164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of catechol structure on the suicide-inactivation of tyrosinase.
    Ramsden CA; Stratford MR; Riley PA
    Org Biomol Chem; 2009 Sep; 7(17):3388-90. PubMed ID: 19675891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination chemical studies on metalloenzymes. Measurement of binding constant between apo-tyrosinase and copper ion.
    Kidani Y; Ohkuma K; Hirose J; Noji M
    Arch Biochem Biophys; 1980 Apr; 200(2):452-60. PubMed ID: 6776894
    [No Abstract]   [Full Text] [Related]  

  • 16. Glutathione-mediated transfer of copper(I) into American lobster apohemocyanin.
    Brouwer M; Brouwer-Hoexum T
    Biochemistry; 1992 Apr; 31(16):4096-102. PubMed ID: 1567855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-polymerization of dopa and cysteinyldopa in melanogenesis in vitro.
    Ito S; Novellino E; Chioccara F; Misuraca G; Prota G
    Experientia; 1980 Jul; 36(7):822-3. PubMed ID: 6772466
    [No Abstract]   [Full Text] [Related]  

  • 18. Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties.
    Neves A; Rossi LM; Bortoluzzi AJ; Szpoganicz B; Wiezbicki C; Schwingel E; Haase W; Ostrovsky S
    Inorg Chem; 2002 Apr; 41(7):1788-94. PubMed ID: 11925171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron paramagnetic resonance of the copper in dopamine beta-monooxygenase. Rapid reduction by ascorbate, the steady-state redox level, chelation with EDTA, and reactivation of the apoenzyme by added copper.
    Skotland T; Petersson L; Bäckström D; Ljones T; Flatmark T; Ehrenberg A
    Eur J Biochem; 1980 Jan; 103(1):5-11. PubMed ID: 6244155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reactivation of apodopamine beta-monooxygenase by vanadyl ions.
    Markossian KA; Paitian NA; Nalbandyan RM
    FEBS Lett; 1988 Oct; 238(2):401-4. PubMed ID: 2844606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.