BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21158271)

  • 1. GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation.
    Zhou B; Yu CX; Chen DZ; Hu XS
    Med Phys; 2010 Nov; 37(11):5593-603. PubMed ID: 21158271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.
    Su L; Yang Y; Bednarz B; Sterpin E; Du X; Liu T; Ji W; Xu XG
    Med Phys; 2014 Jul; 41(7):071709. PubMed ID: 24989378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel beamlet dose calculation via beamlet contexts in a distributed multi-GPU framework.
    Neph R; Ouyang C; Neylon J; Yang Y; Sheng K
    Med Phys; 2019 Aug; 46(8):3719-3733. PubMed ID: 31183871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.
    Jia X; Gu X; Graves YJ; Folkerts M; Jiang SB
    Phys Med Biol; 2011 Nov; 56(22):7017-31. PubMed ID: 22016026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. XIORT-MC: A real-time MC-based dose computation tool for low- energy X-rays intraoperative radiation therapy.
    Ibáñez P; Villa-Abaunza A; Vidal M; Guerra P; Graullera S; Illana C; Udías JM
    Med Phys; 2021 Dec; 48(12):8089-8106. PubMed ID: 34658039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast 3D dosimetric verifications based on an electronic portal imaging device using a GPU calculation engine.
    Zhu J; Chen L; Chen A; Luo G; Deng X; Liu X
    Radiat Oncol; 2015 Apr; 10():85. PubMed ID: 25885567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast on-site Monte Carlo tool for dose calculations in CT applications.
    Chen W; Kolditz D; Beister M; Bohle R; Kalender WA
    Med Phys; 2012 Jun; 39(6):2985-96. PubMed ID: 22755683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy.
    Schiavi A; Senzacqua M; Pioli S; Mairani A; Magro G; Molinelli S; Ciocca M; Battistoni G; Patera V
    Phys Med Biol; 2017 Sep; 62(18):7482-7504. PubMed ID: 28873069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing.
    Tian Z; Zhang M; Hrycushko B; Albuquerque K; Jiang SB; Jia X
    Brachytherapy; 2016; 15(3):387-398. PubMed ID: 27216118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast GPU-accelerated Monte Carlo engine for calculation of MLC-collimated electron fields.
    Brost EE; Wan Chan Tseung H; Antolak JA
    Med Phys; 2023 Jan; 50(1):600-618. PubMed ID: 35986907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
    Tian Z; Shi F; Folkerts M; Qin N; Jiang SB; Jia X
    Phys Med Biol; 2015 Oct; 60(19):7419-35. PubMed ID: 26352012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations.
    Vanderstraeten B; Reynaert N; Paelinck L; Madani I; De Wagter C; De Gersem W; De Neve W; Thierens H
    Med Phys; 2006 Sep; 33(9):3149-58. PubMed ID: 17022207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New capabilities of the Monte Carlo dose engine ARCHER-RT: Clinical validation of the Varian TrueBeam machine for VMAT external beam radiotherapy.
    Adam DP; Liu T; Caracappa PF; Bednarz BP; Xu XG
    Med Phys; 2020 Jun; 47(6):2537-2549. PubMed ID: 32175615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures.
    Neylon J; Sheng K; Yu V; Chen Q; Low DA; Kupelian P; Santhanam A
    Med Phys; 2014 Oct; 41(10):101711. PubMed ID: 25281950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time dose computation: GPU-accelerated source modeling and superposition/convolution.
    Jacques R; Wong J; Taylor R; McNutt T
    Med Phys; 2011 Jan; 38(1):294-305. PubMed ID: 21361198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.
    Ma J; Beltran C; Seum Wan Chan Tseung H; Herman MG
    Med Phys; 2014 Dec; 41(12):121707. PubMed ID: 25471954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model.
    Wang Y; Mazur TR; Green O; Hu Y; Li H; Rodriguez V; Wooten HO; Yang D; Zhao T; Mutic S; Li HH
    Med Phys; 2016 Jul; 43(7):4040. PubMed ID: 27370123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a GPU-superposition Monte Carlo code for fast dose calculation in magnetic fields.
    Li Y; Sun W; Liu H; Ding S; Wang B; Huang X; Song T
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35588723
    [No Abstract]   [Full Text] [Related]  

  • 19. Clinical validation of a GPU-based Monte Carlo dose engine of a commercial treatment planning system for pencil beam scanning proton therapy.
    Fracchiolla F; Engwall E; Janson M; Tamm F; Lorentini S; Fellin F; Bertolini M; Algranati C; Righetto R; Farace P; Amichetti M; Schwarz M
    Phys Med; 2021 Aug; 88():226-234. PubMed ID: 34311160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations.
    Yepes PP; Mirkovic D; Taddei PJ
    Phys Med Biol; 2010 Dec; 55(23):7107-20. PubMed ID: 21076192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.