BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21158302)

  • 1. Optimization of a dual-energy contrast-enhanced technique for a photon-counting digital breast tomosynthesis system: I. A theoretical model.
    Carton AK; Ullberg C; Lindman K; Acciavatti R; Francke T; Maidment AD
    Med Phys; 2010 Nov; 37(11):5896-907. PubMed ID: 21158302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of a dual-energy contrast-enhanced technique for a photon-counting digital breast tomosynthesis system: II. An experimental validation.
    Carton AK; Ullberg C; Maidment AD
    Med Phys; 2010 Nov; 37(11):5908-13. PubMed ID: 21158303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality.
    Samei E; Saunders RS
    Phys Med Biol; 2011 Oct; 56(19):6359-78. PubMed ID: 21908902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner.
    Patel T; Peppard H; Williams MB
    Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of kV, filtration, dose, and object size on soft tissue and iodine contrast in dedicated breast CT.
    Hernandez AM; Abbey CK; Ghazi P; Burkett G; Boone JM
    Med Phys; 2020 Jul; 47(7):2869-2880. PubMed ID: 32233091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of contrast-enhanced breast imaging: Analysis using a cascaded linear system model.
    Hu YH; Scaduto DA; Zhao W
    Med Phys; 2017 Jan; 44(1):43-56. PubMed ID: 28044312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal photon energy comparison between digital breast tomosynthesis and mammography: a case study.
    Di Maria S; Baptista M; Felix M; Oliveira N; Matela N; Janeiro L; Vaz P; Orvalho L; Silva A
    Phys Med; 2014 Jun; 30(4):482-8. PubMed ID: 24613514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards standardization of x-ray beam filters in digital mammography and digital breast tomosynthesis: Monte Carlo simulations and analytical modelling.
    Shrestha S; Vedantham S; Karellas A
    Phys Med Biol; 2017 Mar; 62(5):1969-1993. PubMed ID: 28075335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental optimization of single-exposure dual-energy angiography with photon-counting x-ray detectors.
    Aubert S; Tanguay J
    Med Phys; 2023 Feb; 50(2):763-777. PubMed ID: 36326010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Breast Density Computation in Digital Mammography and Digital Breast Tomosynthesis: Influence on Mean Glandular Dose and BIRADS Density Categorization.
    Castillo-García M; Chevalier M; Garayoa J; Rodriguez-Ruiz A; García-Pinto D; Valverde J
    Acad Radiol; 2017 Jul; 24(7):802-810. PubMed ID: 28214227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of photon-counting multislit breast tomosynthesis.
    Berggren K; Cederström B; Lundqvist M; Fredenberg E
    Med Phys; 2018 Feb; 45(2):549-560. PubMed ID: 29159881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement.
    Saito M
    Med Phys; 2007 Nov; 34(11):4236-46. PubMed ID: 18072488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total variation minimization filter for DBT imaging.
    Mota AM; Matela N; Oliveira N; Almeida P
    Med Phys; 2015 Jun; 42(6):2827-36. PubMed ID: 26127035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical digital breast tomosynthesis system: dosimetric characterization.
    Feng SS; Sechopoulos I
    Radiology; 2012 Apr; 263(1):35-42. PubMed ID: 22332070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of scatter and glare on image quality in contrast-enhanced breast imaging using an a-Si/CsI(TI) full-field flat panel detector.
    Carton AK; Acciavatti R; Kuo J; Maidment AD
    Med Phys; 2009 Mar; 36(3):920-8. PubMed ID: 19378752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional linear system analysis for breast tomosynthesis.
    Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5219-32. PubMed ID: 19175081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms.
    Baptista M; Di Maria S; Barros S; Figueira C; Sarmento M; Orvalho L; Vaz P
    Med Phys; 2015 Jul; 42(7):3788-800. PubMed ID: 26133581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image quality, threshold contrast and mean glandular dose in CR mammography.
    Jakubiak RR; Gamba HR; Neves EB; Peixoto JE
    Phys Med Biol; 2013 Sep; 58(18):6565-83. PubMed ID: 24002695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monochromatic mammography using scanning multilayer X-ray mirrors.
    Windt DL
    Rev Sci Instrum; 2018 Aug; 89(8):083702. PubMed ID: 30184654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.