These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21158311)

  • 21. Segmentation of regions of interest in mammograms in a topographic approach.
    Hong BW; Sohn BS
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):129-39. PubMed ID: 19846384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved dynamic-programming-based algorithms for segmentation of masses in mammograms.
    Rojas Domínguez A; Nandi AK
    Med Phys; 2007 Nov; 34(11):4256-69. PubMed ID: 18072490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision.
    Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y
    Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Region based stellate features combined with variable selection using AdaBoost learning in mammographic computer-aided detection.
    Kim DH; Choi JY; Ro YM
    Comput Biol Med; 2015 Aug; 63():238-50. PubMed ID: 25444461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiomics based detection and characterization of suspicious lesions on full field digital mammograms.
    Sapate SG; Mahajan A; Talbar SN; Sable N; Desai S; Thakur M
    Comput Methods Programs Biomed; 2018 Sep; 163():1-20. PubMed ID: 30119844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of border information in the classification of mammographic masses.
    Varela C; Timp S; Karssemeijer N
    Phys Med Biol; 2006 Jan; 51(2):425-41. PubMed ID: 16394348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A deep learning approach for the analysis of masses in mammograms with minimal user intervention.
    Dhungel N; Carneiro G; Bradley AP
    Med Image Anal; 2017 Apr; 37():114-128. PubMed ID: 28171807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of breast masses in mammograms by density slicing and texture flow-field analysis.
    Mudigonda NR; Rangayyan RM; Desautels JE
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1215-27. PubMed ID: 11811822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated seeded lesion segmentation on digital mammograms.
    Kupinski MA; Giger ML
    IEEE Trans Med Imaging; 1998 Aug; 17(4):510-7. PubMed ID: 9845307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of dominant features on neural network performance in the classification of mammographic lesions.
    Huo Z; Giger ML; Metz CE
    Phys Med Biol; 1999 Oct; 44(10):2579-95. PubMed ID: 10533930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of a New Ensemble Learning Framework for Mass Classification in Mammograms.
    Rahmani Seryasat O; Haddadnia J
    Clin Breast Cancer; 2018 Jun; 18(3):e407-e420. PubMed ID: 29141776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radial-searching contour extraction method based on a modified active contour model for mammographic masses.
    Nakagawa T; Hara T; Fujita H; Horita K; Iwase T; Endo T
    Radiol Phys Technol; 2008 Jul; 1(2):151-61. PubMed ID: 20821141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ACCOMP: Augmented cell competition algorithm for breast lesion demarcation in sonography.
    Cheng JZ; Chou YH; Huang CS; Chang YC; Tiu CM; Yeh FC; Chen KW; Tsou CH; Chen CM
    Med Phys; 2010 Dec; 37(12):6240-52. PubMed ID: 21302781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization.
    Sahiner B; Petrick N; Chan HP; Hadjiiski LM; Paramagul C; Helvie MA; Gurcan MN
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1275-84. PubMed ID: 11811827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.
    Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS
    Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mammographic features of breast cancers at single reading with computer-aided detection and at double reading in a large multicenter prospective trial of computer-aided detection: CADET II.
    James JJ; Gilbert FJ; Wallis MG; Gillan MG; Astley SM; Boggis CR; Agbaje OF; Brentnall AR; Duffy SW
    Radiology; 2010 Aug; 256(2):379-86. PubMed ID: 20656831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating segmentation information into CNN for breast cancer diagnosis of mammographic masses.
    Tsochatzidis L; Koutla P; Costaridou L; Pratikakis I
    Comput Methods Programs Biomed; 2021 Mar; 200():105913. PubMed ID: 33422854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treatment response assessment of breast masses on dynamic contrast-enhanced magnetic resonance scans using fuzzy c-means clustering and level set segmentation.
    Shi J; Sahiner B; Chan HP; Paramagul C; Hadjiiski LM; Helvie M; Chenevert T
    Med Phys; 2009 Nov; 36(11):5052-63. PubMed ID: 19994516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Globally supported radial basis function based collocation method for evolution of level set in mass segmentation using mammograms.
    Kashyap KL; Bajpai MK; Khanna P
    Comput Biol Med; 2017 Aug; 87():22-37. PubMed ID: 28549292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system.
    Al-Masni MA; Al-Antari MA; Park JM; Gi G; Kim TY; Rivera P; Valarezo E; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Apr; 157():85-94. PubMed ID: 29477437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.